MANAGING AND REDUCING ENVIRONMENTAL LIABILITIES AT THE TOWN OF SLAVE LAKE A SUSTAINABLE SALT REMEDIATION STRATEGY

Zion Yua, M.Eng., P.Eng., PMP – Associate and Assistant Branch Manager

PRESENTATION OUTLINE

- Company Introduction
- Background
- Assessments
- Operational Improvements
- Risk Management Plan
- Results and Challenges
- Future Planning and Take Aways
- Acknowledgements

COMPANY INTRODUCTION

Building Canada with great people and great ideas.

- Since 1957
- 100% Canadian and employee-owned
- 15 offices (AB, BC, ON, SK)
- Advanced geotechnical, construction materials, and tailings laboratories.
- 500+ dedicated full-time professionals
- 45,000+ completed projects

Our key services

- Geotechnical engineering
- Environmental sciences
- Construction materials engineering and testing

Sectors served

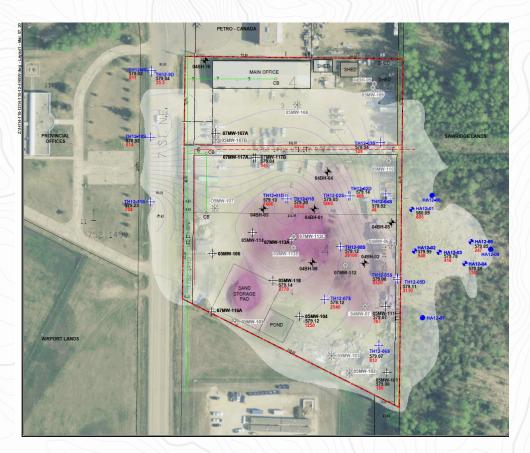
- Buildings
- Transportation
- Infrastructure
- Industrial development
- Oil and gas
- Natural resources and renewables
- Dams, mines, and tailings facilities
- Marine development
- Land development

CASE STUDY BACKGROUND

Project Information

- Active town maintenance yard that managed winter salt and sand (pickled sand).
- Pickled sand originally stored and handled directly on the gravel yard resulted in salt infiltration into the soil and groundwater.
- Site assessments by previous consultants between 2004 and 2009.
- Alberta Environment and Protected Areas recommended additional assessments and requested a RAP and RMP for the site in 2009.

Contaminant of Concern - Salt


- Commonly NaCl, CaCl₂, MgCl₂, KCl
- Environmental impacts from improper storage or management of salt.
- Potential environmental impacts from salt (SCARG, 2001):
 - Degradation of soil chemical properties and impaired vegetative growth
 - Degradation of soil physical properties caused by excess sodium concentrations
 - Degraded surface water or groundwater quality.

ASSESSMENTS

THURBER

Electromagnetic Survey and Conductivity Profiles

- Electromagnetic (EM) survey completed in 2012 to evaluate the terrain conductivity.
- Vertical conductivity profiles completed during direct-push drilling investigations.
- EM survey identified areas of elevated terrain conductivity:
 - Central area where pickled sand was historically stored.
 - Current (2012) pickled sand storage pad.

Phase 3 Environmental Site Assessment

- Thurber completed Phase 3 ESAs in 2012 and 2013.
- Expanded the existing monitoring well network:
 - Road allowance area west of 7 Street
 - Sawridge First Nations land east of the site
 - Nested wells to evaluate vertical gradients
 - Sentinel wells around the site perimeter
- Delineated the salinity impacts in the soil.

Phase 3 ESA Results

- Salinity impacts identified on site in the soil and groundwater:
 - Groundwater:
 - Peak chloride ~30,000 mg/L
 - Peak sodium ~14,000 mg/L
 - Soil:
 - Peak chloride ~15,000 mg/L
 - Peak EC ~60 dS/m
- Off-site salinity impacts in the Sawridge FN land east of the site.
- Additional off-site impacts along the road
 allowance NW of the site.

OPERATIONAL IMPROVEMENTS

Operational Improvements

- Winter salt and sand had been stored on the gravel yard.
- Operational Improvements:
 - Asphalt pad for the salt and sand stockpiles
 - Retention pond for leachate management
 - Quonset over the asphalt pad

RISK MANAGEMENT PLAN

Preliminary Risk Management Plan

- Thurber developed a Preliminary RMP with input from EPA.
- CoPCs identified:
 - Soil: pH, electrical conductivity (EC), sodium adsorption ratio (SAR), and elevated chloride
 - Groundwater: pH, sodium, chloride, and dissolved metals
- Assessment results:
 - Soil impacts spanned an area of approx. 11,000 m² (total soil volume 60,000 to 80,000 m³).
 - Full remediation costs estimated upwards of \$8 Million (in 2013).
 - Risk of plume expanding to impact surrounding environmental receptors (Lesser Slave Lake).
- Preliminary RMP proposed shallow soil treatment, vegetation assessment in Sawridge FN Lands, groundwater recovery, and further assessing and monitoring soil and groundwater conditions.

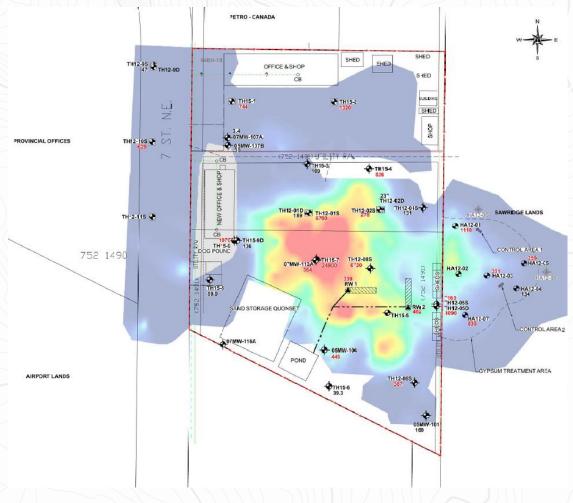
Soil Treatment and Monitoring

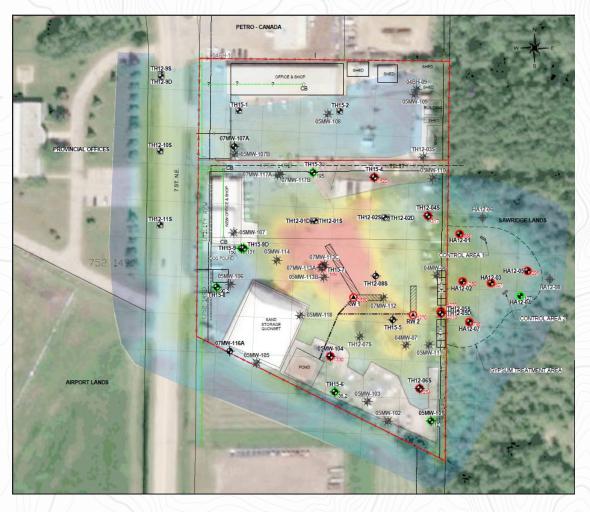
- Elevated SAR in the Sawridge FN land off-site soil treatment with gypsum was proposed.
- Elevated sodium in soil hinders plant growth and establishment.
- Gypsum, CaSO₄•2H₂O, is added to soil.
 - Sodium cations that were adsorbed to soil particles are replaced by calcium cations from the gypsum amendment.
 - The sodium is then mobilized and flushed through the soil.
- Gypsum amendment was conducted during the growing season annually.
- Soil monitoring to assess the soil quality during treatment.
- Managing EC levels during soil treatment.

Vegetation Assessment

- Evaluated vegetation species and health in the Sawridge FN Lands east of the site.
- Established a baseline for off-site conditions prior to soil treatment and groundwater remediation.

Groundwater Recovery and Disposal





- Groundwater recovery system (GWRS) installed at a large diameter (150 mm dia.) recovery well (RW1) with a submersible pump.
- A pilot test conducted in 2014.
- RW1 and RW2 and associated infiltration trenches installed in 2015.

Groundwater Recovery and Disposal (continued)



2024

THURBER

Groundwater Monitoring and Subsoil Salinity Tool

- Annual and semi-annual GWMPs.
- Decreasing chloride trends and retracting salinity plume.
- EM surveys completed at the site in 2012, 2018, and 2022.
- Results of the 2021 SST Evaluation
 - Limited reduction in the remedial excavation requirements.
 - Confirmed that the current RMP was protective of the nearest receptors.

RESULTS AND CHALLENGES

2012

Results

- Original estimate for full remediation was \$8 Million (in 2013). To date, total spent on environmental efforts are less than \$1 Million.
- Since 2015, over 1,100 m³ of chloride-impacted groundwater and 8,300 kg of chloride mass has been removed from site.
- Over 55 percent reduction in the contaminant plume area across the site.

Challenges

- Including operations staff and leadership in planning the work each year.
- Staffing changes at the Town of Slave Lake.
- Thurber became the trusted source of current and historical data for the site to inform the new PMs and new councils and mayors.
- How to pay for this effort?
 - Providing estimates early of the full program costs.
 - Town of Slave Lake included the full costs as a liability on the town's balance sheet.
 - Each year's efforts reduced that liability.
- Becoming more efficient.
 - Engaging with operations staff to find ways to complete more tasks internally.

FUTURE PLANNING AND TAKE AWAYS

Future Planning

- Original objective: reduce/remove the salt source, manage the plume, and prevent impact to the lake and other surrounding receptors.
- Progress: improved operational processes, removed a substantial mass of chloride, and shrunk the contaminant plume.
- Next steps: long-term groundwater and soil monitoring while site is operational.

Key Take Aways

- Continue verifying and calibrating remedial methods by collecting data (e.g. EM surveys, soil and groundwater monitoring, analytical data).
- Closed feedback loop.
- Progress is made with consistent and sustainable effort.
- Client is king.

ACKNOWLEDGEMENTS

CRAIG CAMPBELL M.ENG., P.ENG.
PARTNER AND SENIOR ENVIRONMENTAL ENGINEER

KUSH PATEL M.SC., P.ENG.PROJECT MANAGER

CALVIN COUTURIER
DIRECTOR OF OPERATIONS

DEAN MILLERPUBLIC WORKS SUPERVISOR

THANK YOU!

ZION YUA M.ENG., P.ENG., PMP

E. zyua@thurber.ca

C. 780 237 8556

