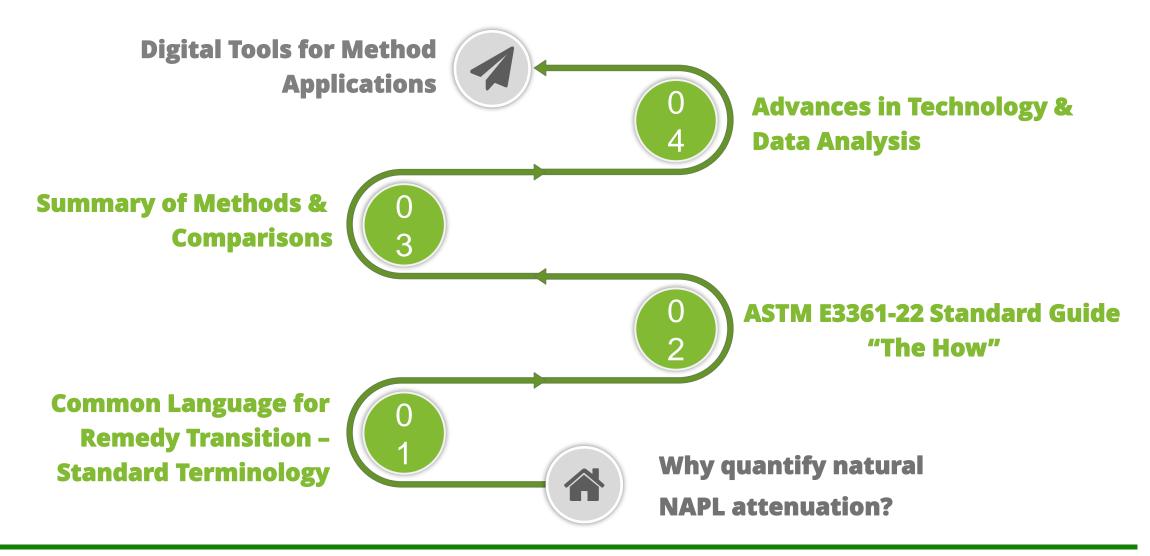
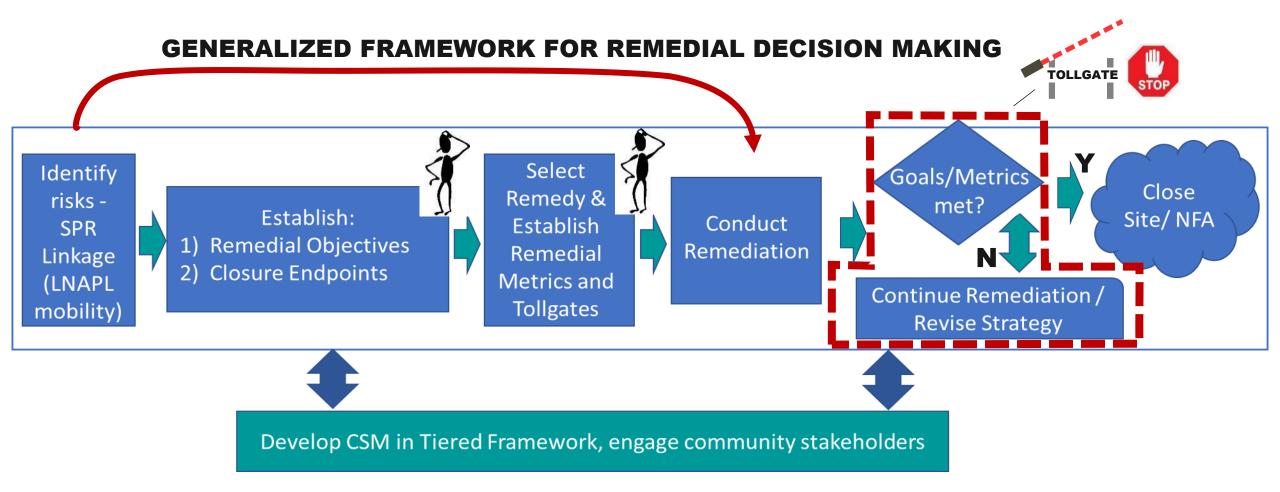
Quantifying Natural NAPL Attenuation: Practical Tools to Support Remedy Transition

Remediation Technologies Symposium

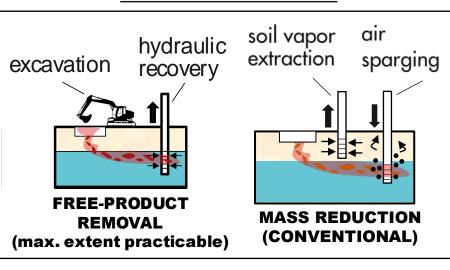
RemTech 2025 - LNAPL Session


Banff, Alberta 16 October 2025

Parisa Jourabchi, Ph.D., P.Eng. Founder & Chief Science Officer, ARIS Environmental Ltd.

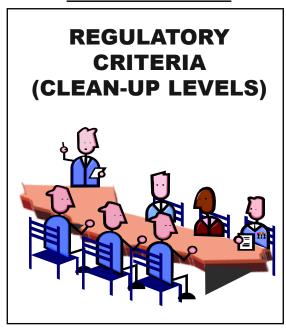

Matthew Lahvis, Ph.D.
Principal Scientist, Shell Oil Products US

Case for Change: Systems Operating Beyond Useful Lifespan


Case for Change: Poorly Defined Remedial Concerns

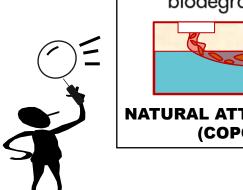
10 lb/d

(BULK)


RISK (COMPOSITION)

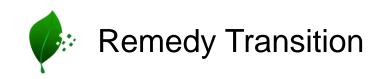
ACTIVE SYSTEM

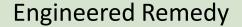
disconnect drives unnecessary active remediation


END POINT

NATURAL SYSTEM

biodegradation **NATURAL ATTENUATION** (COPCs)




Matthew Lahvis (Shell)

LNAPL

groundwater

IMPACTED SITE

More engineered intervention

Shorter timeframe

Higher cost

Higher GHG emissions

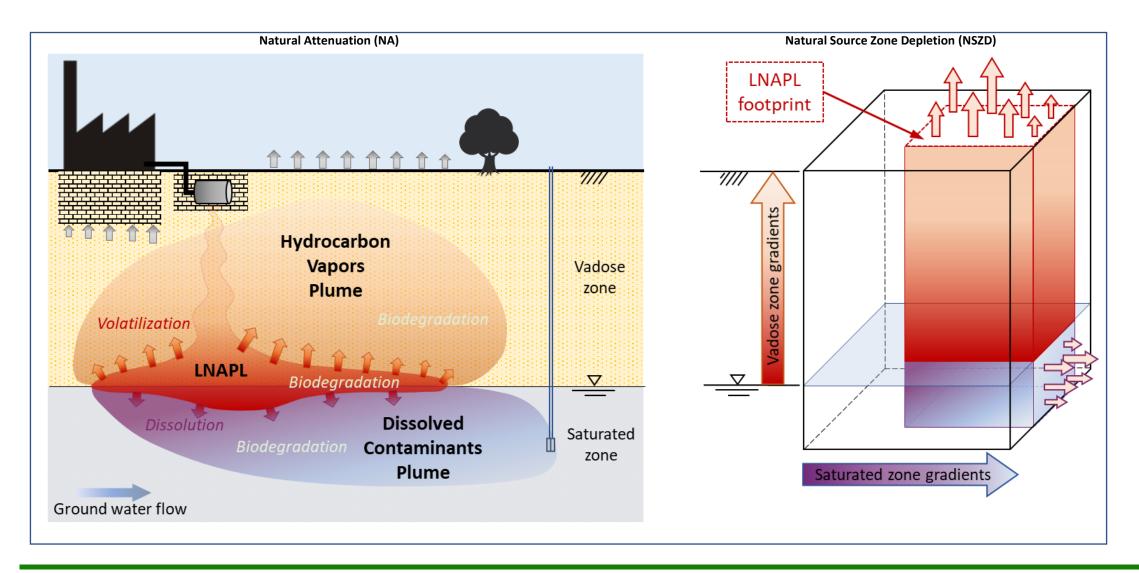
Higher energy use

Natural Remedy

Less engineered intervention

Longer timeframe

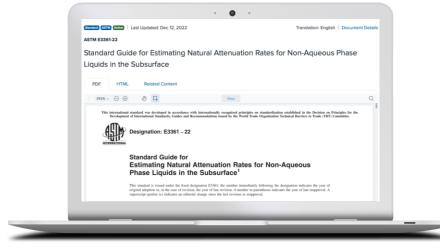
Lower cost


Remediation Spectrum

Lower GHG emissions

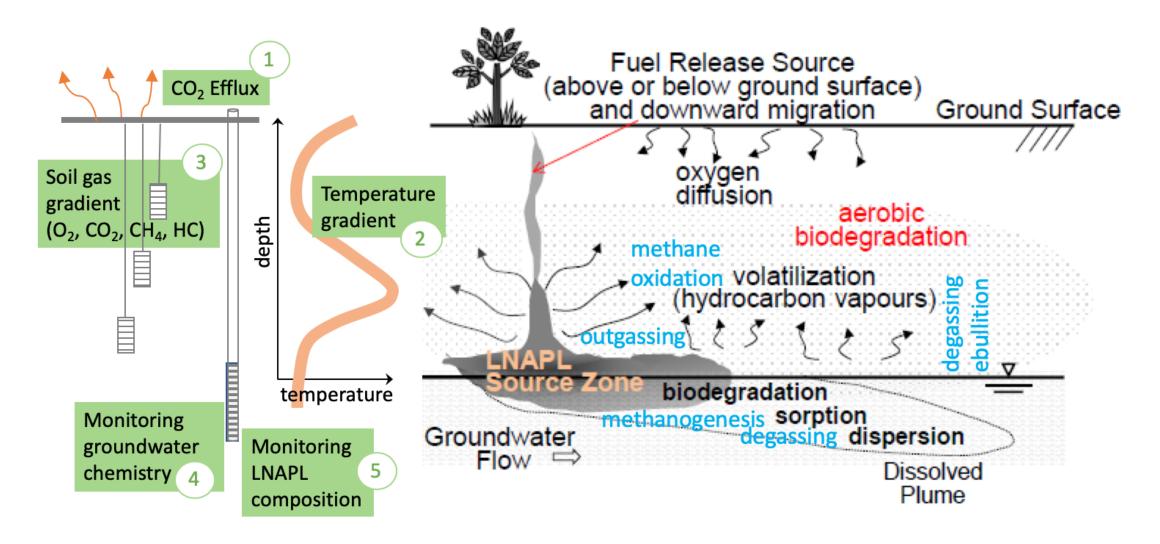
Lower energy use

Natural Attenuation & Natural Source Zone Depletion (NSZD)



Natural Attenuation Estimation Methods

- 1. CO₂ Efflux Method
- 2. Temperature Gradient Method
- 3. Soil Gas Gradient Method
- 4. Groundwater Monitoring Method
- 5. NAPL Composition Method


ASTM E3361

Multiple technologies & approaches for data collection & interpretation for each method...

Natural Attenuation Processes & Pathways

CO₂ Efflux Method – Example Implementation

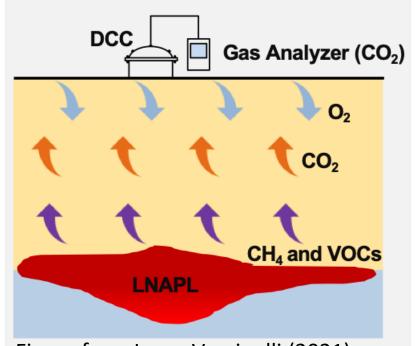


Figure from Iason Verginelli (2021)

Step 1. Install DCC

Step 2. Estimate the CO_2 Efflux, J_{CO2}

Step 3. Correct for background sources

$$J_{CSR} = J_{CO_2} - J_{NSR}$$

$$J_{CSR} = \text{attributed to NAPL soil respiration } (\mu \text{mol CO}_2/\text{m}^2/\text{s})$$

$$J_{CO_2} = \text{total measured } (\mu \text{mol CO}_2/\text{m}^2/\text{s})$$

$$J_{NSR} = \text{attributed to natural soil respiration } (\mu \text{mol CO}_2/\text{m}^2/\text{s})$$

Step 4. Estimate the NSZD Flux

$$J_{NSZD} = J_{CSR} \frac{M_w S_{HC:CO2} U}{\rho_o}$$

$$J_{NSZD} = J_{CSR} \frac{M_w S_{HC:CO2} U}{\rho_o} = J_{CSR} \frac{M_w S_{HC:CO2} = Stoichiometric ratio of a mole of hydrocarbon degraded per mole of CO2 produced
$$\rho_o = J_{CSR} \frac{M_w S_{HC:CO2} U}{\rho_o} = J_{CSR} \frac{M_w S_{H$$$$

Example: CO₂ Efflux Method

Tools

Dynamic closed chamber
Active air flow connected to infrared detector

Measurement time scale: snapshot (minutes)
Continuous monitoring

Static trap
Sorbent material to passively capture CO₂

Measurement time scale: weeks (~1 to 4 weeks)

Forced diffusion dynamic chamber Flow regulated by gas permeable membrane

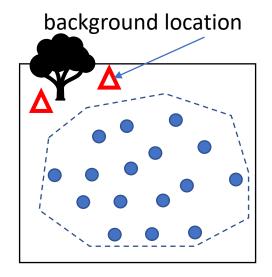
Measurement time scale: snapshot (minutes) continuous monitoring

Products / Instruments

LI-COR Biosciences Automated Soil Gas Flux System

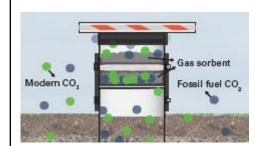
E-Flux Fossil-Fuel Trap

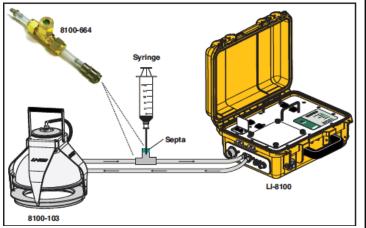
Eosense eosFD soil CO₂ flux sensor



Background Sources of CO₂

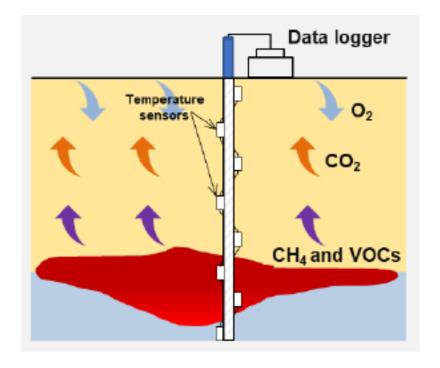
CO₂ produced from natural soil respiration


CO₂ Efflux = Contaminant Soil Respiration + Natural Soil Respiration


- Two general approaches:
 - Sampling background locations
 - Sampling & analysis of radiocarbon (¹⁴C)
- Design of program for background correction is site specific:
 - Heterogeneity in surface cover & vegetation
 - Heterogeneity in hydrogeologic conditions

Sampling for ¹⁴C Analysis

Contemporary (modern) organic carbon is ¹⁴C-rich, while fossil fuel carbon is ¹⁴C-depleted



Temperature Gradient Method – Example Implementation

Step 1. Identify the temperature profile

Step 2. Correct for background sources (select from three approaches)

Thermal correction approach	Measurement at background location
Background correction	yes
Thermal correction from surface heating and cooling – "single-stick" method	no
Thermal correction from surface heating and cooling - modeling	no

Step 3. Estimate the NSZD Flux, J_{NSZD}

Temperature Gradient Method – New Guidance Content

Advances in the in-situ estimation of soil thermal conductivity

- 1. Active heat source is supplied and changes in temperature are monitored (Karimi Askarani et al. 2021)
- 2. Long-term temperature monitoring to estimate thermal diffusivity (Sweeney, unpublished and Kulkarni et al. 2021)
- requires estimate of volumetric heat capacity based on soil type and moisture content.

Advances in correcting for background sources

- Solution to heat conduction in 1-D at steady state
- Solving for three unknown variables:
 - 1. boundary condition of heat source/sink at the ground surface
 - 2. NSZD related heat source
 - 3. depth of the heat source
- Iterative algorithm & optimized fit between the observed and predicted temperature profiles

"Single-Stick" Method

Thermal estimation of natural source zone depletion rates without background correction Water Research 169 (2020) 115245

Kayvan Karimi Askarani, Thomas Clay Sale*

Civil and Environmental Engineering Department, Colorado State University, 1320 Campus Delivery, B01, Fort Collins, CO. 80523-1320, USA

Soil Gas Gradient Method – Example Implementation

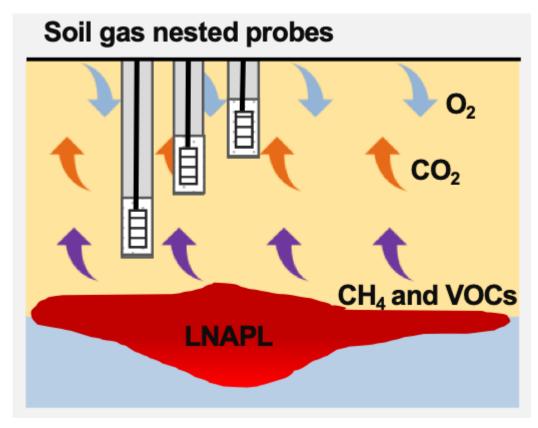
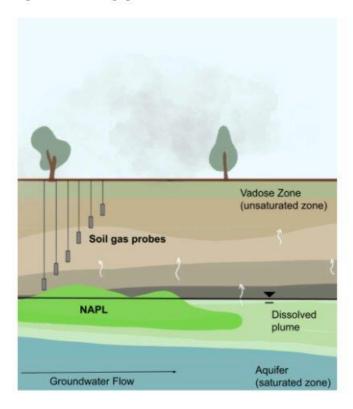
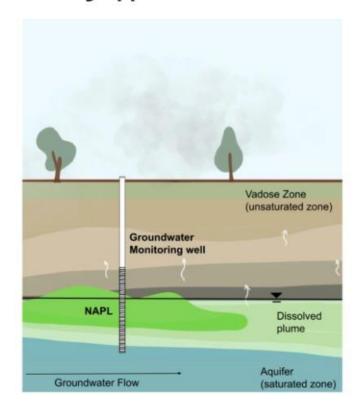


Figure from Dr. Iason Verginelli (2021)

- **Step 1.** Identify the O_2 concentration profile in soil gas
- **Step 2.** Estimate the concentration gradient of O_2 in soil gas
- **Step 3.** Estimate the reaction length
- **Step 4.** Estimate the diffusion coefficient
- **Step 5.** Estimate the mass flux
- **Step 6.** Correct for background O₂ demand (two approaches)
- **Step 7.** Estimate the NSZD Flux, J_{NSZD}


$$J_{NSZD} = J_{CSR} S_{HC:O2}$$

 J_{NSZD} in gallons/acre/year $S_{HC:O2}$ = Stoichiometric mass ratio of g of hydrocarbon degraded per g of O_2 consumed



Advances in Soil Gas Method (SGM E-Tool)

Simplified Approach

Screening Approach

Water Research

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

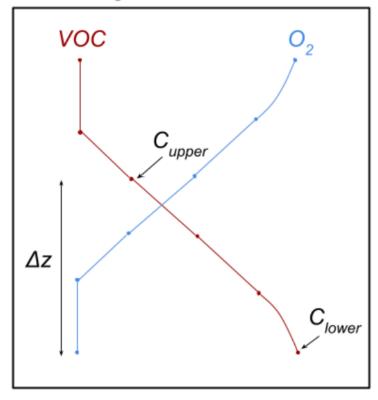
Soil gas gradient method for estimating natural source zone depletion rates of LNAPL and specific chemicals of concern

Iason Verginelli ^(a, *), Matthew A. Lahvis ^(b), Parisa Jourabchi ^(c), George E. DeVaull ^(b)

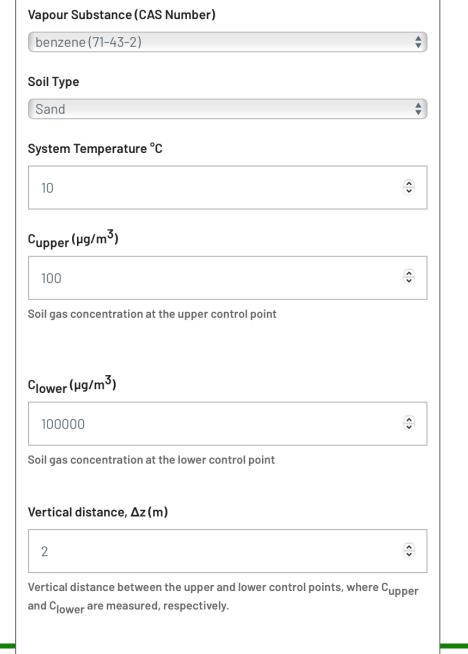
* Islammary of Environmental Engineering, Department of Crief Engineering and Computer Science Engineering, University of Rome Tor Vergusa, Via del Politecnica I, 2013 Rome, Ruly

* Repub Environmental Litz design business as Shell Od Products US, Houston, TX, USA

* ARIS Environmental Litz, Venezuere, RC, Cannolin


Verginelli et al (2024) Water Research

COC-specific rates directly linked to risk reduction



Soil gas concentrations

Full details and references in the User Guide and FAQs of the SGM E-Tool

	SGM Output		
System Temperature Kelvin	T_S	2.83E+02	Kelvin
Diffusivity in air	D _{air}	7.73E-01	m ² /day
Diffusivity in water	D _{h2o}	8.90E-05	m ² /day
Henry's law constant at the system temperature	H_{S}	1.24E-01	2
Effective diffusion coefficient	D _{eff}	1.44E-06	m^2/s
Reactive diffusive length	L _R	2.90E-01	m
NSZD flux	J	4.300E-02	g/m ² /day

Groundwater Monitoring Method – Example Implementation

Groundwater monitoring wells INAPL INAPL

Step 1. Estimate source mass depletion due to dissolution & flow

Step 2. Estimate the assimilative capacity, A_c , based on groundwater monitoring data

Step 3. Assess conditions for degassing & calculate A_c accordingly

Step 4. Estimate the rate of biodegradation in the saturated zone

Step 5. Estimate the total rate in the saturated zone, R_{sat} (kg/day)

$$R_{sat} = R_{sat-dis} + R_{sat-bio}$$

 R_{sat} = total mass loss of hydrocarbons in the saturated source zone combination of dissolution and flow of the hydrocarbons ($R_{sat-dis}$) and the rate of hydrocarbons biodegraded ($R_{sat-bio}$).

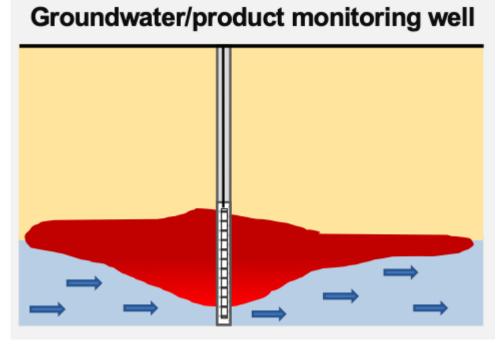
Groundwater Monitoring Method – Confined NAPL Conditions

Modified Control Volume Method

Estimate methene generation based on:

- Sampling & analysis of dissolved N₂, Ar,
 CO₂ and CH₄ data
- Degassing batch model of Amos et al. (2005)
- 3. Model calibration
- 4. Include degassing into the assimilative capacity, A_C $\propto A_C$

$$R_{sat} = R_{sat-dis} + R_{sat-bio}$$


Using a Batch Model to Estimate Methane Production

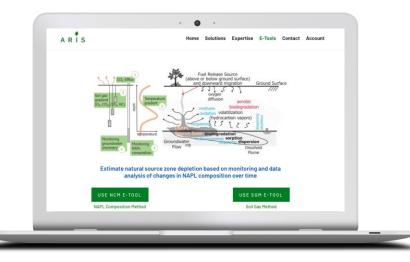
Degassing Method Natural Source Zone Depletion Case Study
Reyenga (2020)
Applied NAPL Science Review (ANSR)

Degassing can be significant for confined NAPL/low permeability conditions

NAPL Composition Method – Example Implementation

- Conservative compound(s) increase in concentration due to weathering NAPL
- Mass loss of other compounds due to biodegradation, volatilization and dissolution
- Absolute mass loss rate estimated relative to the increase in conservative compound(s)
- Mass loss from single conservative compound
 Douglas et al. (1996)

Environmental Stability of Selected Petroleum
Hydrocarbon Source and Weathering Ratios - ES&T
Baedecker at al. (2018)


Weathering of Oil in a Surficial Aquifer - Groundwater

NAPL Composition Method (NCM) E-Tool

Streamlining the calculations!

Input is a file containing mass fractions of each chemical

https://arisenv.ca/e-tools/

Example:

Elapsed years	0	0.025	0.5	
benzene	0.00863	0.0095	0.00847	
toluene	0.0653	0.0388	0.0366	

Optimum marker count q

1

•

SUBMIT

Rank-Ordered Output

Rank Order	Chemical Names	Relative Rates (per year)		
		Mean	95% Confidence Interval (±)	
1	n-C10	1.25E-01	6.18E-02	
2	n-C13	9.65E-02	1.22E-01	
3	n-C5	9.06E-02	1.19E-01	
4	n-C6	5.94E-02	6.99E-02	
5	n-C14	5.30E-02	6.21E-02	
6	n-C8	4.33E-02	3.66E-02	
7	n-C12	2.63E-02	2.68E-02	
8	Benzene	1.66E-02	1.27E-01	
9	Toluene	1.43E-02	9.84E-02	
10	n-C7	1.19E-02	4.39E-02	
11	Et-Benzene	-2.16E-03	4.53E-02	
12	Farnesane	-2.30E-03	5.48E-02	
13	Isooctane	-2.72E-03	3.89E-02	
14	n-C15	-6.62E-03	5.51E-02	

Determining Site-Specific & NAPL-Specific Marker(s)

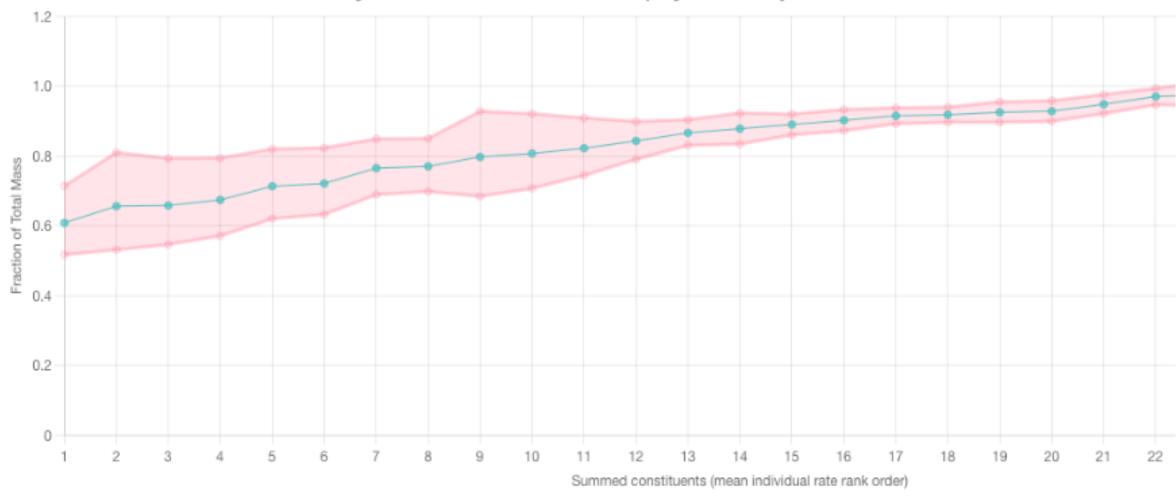
- ➤ Identify relevant constituents
- ➤ Calculate relative rates

 ✓

$$\ln\left(\frac{\chi_{A,i}(t)}{1-\chi_{A,i}(t)}\right) = \ln\left(\frac{\chi_{A,i}(0)}{1-\chi_{A,i}(0)}\right) - \underline{\kappa_{A,i}}t$$

- \triangleright Highest rates, $\kappa_{A,i}$ represent most conservative constituents
- Refinement step: summed marker constituents $q = 1 \cdots i$ (ordered ranking of rates; top 1, 2, 3, ...)

NCM Output: fraction of total mass versus ordered summed constituents


https://arisenv.ca/e-tools/

Optimum q Selection: Analysis of Fraction of Total Mass

NCM Output with Adjusted q = 4

NCM Output for the Selected q = 4					
Rank Order	Chemical Names	Relative Rates (per year)		K _{eff} (per year)(t=0)	Half-life (years)
		Mean	95% Confidence Interval (±)	Mean	Mean
1	n-C10	1.25E-01	6-18E-02	2.36E-02	-
2	n-C13	9-65E-02	1.22E-01	-7.18E-03	96-6
3	n-C5	9.06E-02	1.19E-01	-8-8IE-03	78-7
4	n-C6	5.94E-02	6-99E-02	-4-03E-02	17-2
5	n-C14	5-30E-02	6-21E-02	-4.8IE-02	14.4
6	n-C8	4.33E-02	3.66E-02	-5.60E-02	12.4
7	n-C12	2.63E-02	2.68E-02	-7.4IE-02	9.4
8	Benzene	1-66E-02	1.27E-01	-8-24E-02	8.4
g	Toluene	1.43E-02	9.84E-02	-8-51E-02	8.1
10	n-C7	1-19E-02	4-39E-02	-8-72E-02	7.9
n	Et-Benzene	-2-16E-03	4-53E-02	-1.01E-01	6.9

Effective Rate (per year) at t = 0

$$\kappa_{eff,i}(t=0) = \kappa_{A,q} (1 - \chi_{0,A,q}) + \kappa_{A,i} (1 - \chi_{0,A,i})$$

Half-life (years)

$$t_{1/2,eff} = -\ln(0.5)/\kappa_{eff,i}$$

Method Strengths & Limitations

Considerations & Limitations

- Long-term monitoring data representative of site-conditions
- Method assumes no additional releases during monitoring period
- Consistent analytical method and normalization over the monitoring period
- Variations in marker selections
- Constituents with non-detects
- If best available markers are not conserved -> rates are underestimated

Key Advantages

- ❖ Application of the method is not limited by location of the NAPL source zone, soil type or ground surface conditions
- Marker selection method expands applicability of method to NAPL types, such as petroleum products, that don't typically contain "presumed" markers (less soluble, volatile, higher molecular weight chemicals)
- Though computationally more complex, online tools are available for efficient data analysis

Constituent-specific depletion rates for any constituent that can be measured in the NAPL

