

In-Situ Microbial Remediation of a Historical Crude Oil Release within a Wetland Jasper National Park, Alberta

October 16, 2025 RemTech 2025 Presentation

Murray Ostrander - Alta Tech Environmental Services Heather Anderson - Trans Mountain

Bringing Value to Compliance

Outline

- Introduction
- Background
- Site Setting
- Regulatory Framework
- Site Characterization
- Remedial Design and Implementation
- Results
- Next Steps
- Acknowledgements

Background

- The site is situated within Jasper National Park, approximately 8 km west of the Jasper townsite.
- In 1966, a crude oil release occurred when a rock dislodged during highway blasting, which ruptured the pipeline.
- Contamination was removed in accordance with the standards of the day.
- In 2021, residual contamination was discovered during pipeline maintenance activities.

Site Setting

Location & Access:

- The site includes areas on and off the Trans Mountain Pipeline Right of Way.
- Remote area with no road access.
- Access is further limited by high snow volumes, dense vegetation and waterbodies

Ecological Features

Marsh, fen, swamp, and forest habitats.

Geological Characteristics

Subsurface conditions vary and include sand, silt, clay, and peat.

Regulatory Framework

- The site is federally regulated under the authority of both Parks Canada and the Canada Energy Regulator (CER).
- Applicable Guidelines:
- Federal CCME Guidelines are applied, including:
 - Groundwater: Benchmarks for Freshwater Aquatic Life
 - Soil: CCME Soil Quality Guidelines for Agricultural Land Use are used.
- Federal Interim Groundwater Quality Guidelines have been applied where CCME values are unavailable.
- Provincial guidelines are not considered, as the site is under federal jurisdiction.

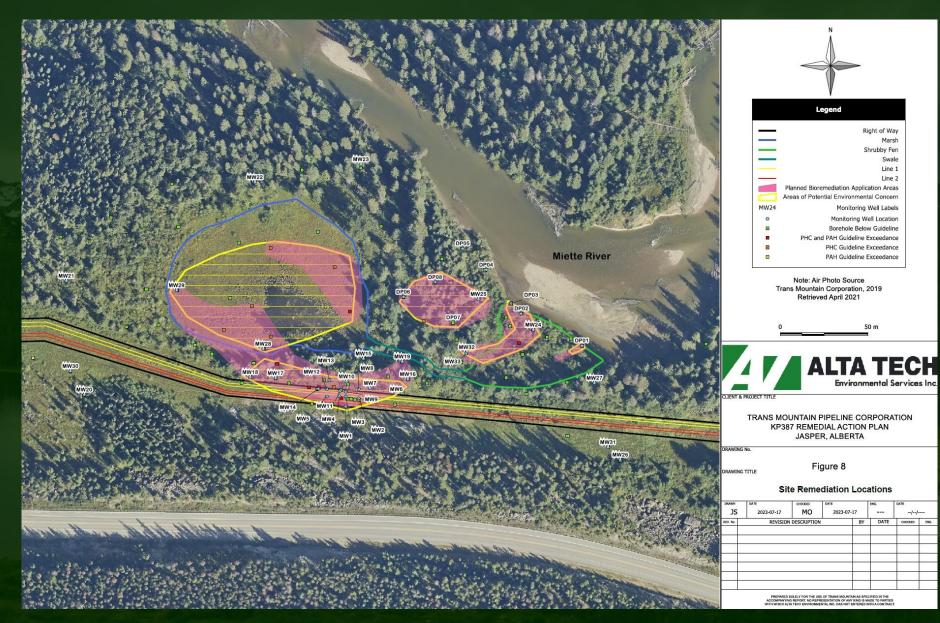
Site Characterization

Contaminants of Concern:

BTEX, F1-F4, PAHs

Depth of Impacts:

0-2 mbgs


Site Size: 3 HA

Impact Area: 0.8 HA (8000

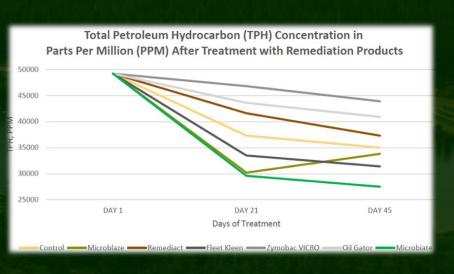
 m^2)

Distinct Geological Areas:

- ROW: clay/gravel fill
- Marsh: Peat
- Swale: Silty Sand
- Shrubby fen: Clay/Silt Sand
- Area adjacent to Miette River: Sand

Remedial Option Assessment

- Remediation options were evaluated for viability and costs:
 - Monitored Natural Attenuation
 - Excavation and Disposal of Impacted Soil
 - In-Situ Chemical Oxidation
 - In-Situ Microbial Treatment
 - Reactive Barrier Installation
- Microbial treatment was selected as the preferred option:
 - Bench scale testing determined it was effective
 - Minimal site disturbance necessary
 - Minimal residual impacts remain behind
 - Cost less than most of the options considered, a small fraction of cost for excavation, disposal and site reclamation



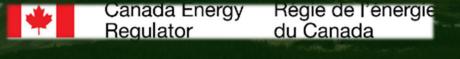
BioNorth's Microbial Product

- Different microbial suppliers were considered
- BioNorth's Microbiate product was selected:
 - Only Canadian Microbiate supplier available
 - Microbiate Product developed in their Thunder Bay facility
 - Bacteria strains developed from naturally occurring in soil of Northern Canada
 - Microbiate contains six strains which degrade hydrocarbon impacts
 - Working temperature 0 ° 49° C
 - Other products stop working in temperatures lower than 5°– 8° C, site is below this range most of the year
 - Low costs, high concentration of microbes

Microbiate™ - Best-in-Class in All Categories				
Product	Working Temperature	Moisture Required	Product Requirement Per M ³	Price Per M ³
Oil Buster PRP	5-35° C	20%	•	\$\$\$
Oil Gator	5-49° C	30%	•	\$\$
Liquid Remediact	5-49° C	30%		\$\$\$
Remediact Dry	10-32° C	30%	igorplus	\$
Zymobac VICRO	Not Available	30-40%	0	Not Available
Micro Blaze	8-48° C	30-40%	•	\$
BioNorth Solutions	0° C to 49° C	12 to 15%	0	\$

Bench Scale Testing

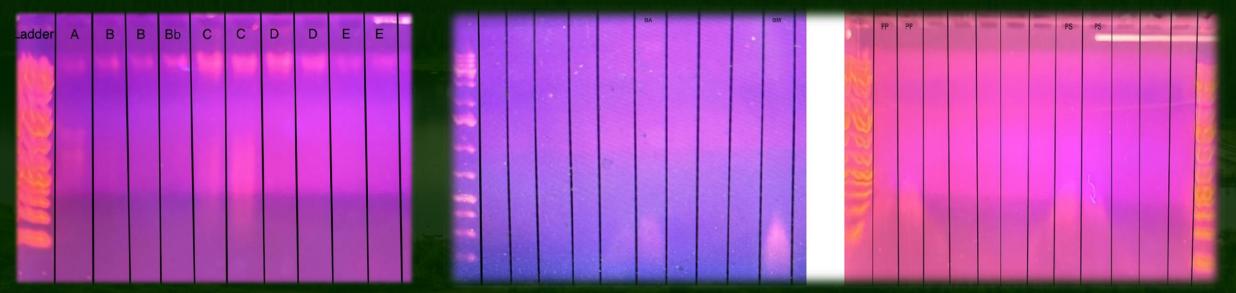
- Site review by BioNorth determined the Site was a good candidate for microbial remediation based on:
 - Concentrations levels
 - pH, CO, EC levels
 - Naturally occurring nutrients in Marsh, Swale and Fen



- Bench Scale Tested Conducted by BioNorth,
 - Impacted soil and groundwater samples from site were tested
 - Column treatments were run for 45 days
 - Reductions of hydrocarbon concentrations range from 30 100%

Microbial Treatment Impact Assessment

- Once the microbial treatment was selected, a basic impact assessment was conducted
- Required for most projects within a Canadian National Park
- Assessment considered:
 - Introducing invasive species
 - Soil and landforms
 - Surface water
 - Groundwater
 - Fish and fish habitat
 - Wetlands
 - Vegetation
 - Species at risk
 - Wildlife and wildlife habitat
 - Potential archaeological resources
 - Traditional Land Use and Indigenous Engagement
- Consultation with:
 - Parks Canada
 - Local Indigenous Groups
 - Canadian Energy Regulator



Microbial Treatment Impact Assessment

- Main Outcomes:
 - Endorsed by local Indigenous groups supported the low disturbance, low impact remediation approach.
 - Microbiate not evasive, strains same as naturally occurring at Site, determined through genetic analysis by BioNorth and confirmed by A&L Canada.
 - One Microbiate strain, R15 was identified to potentially impact trout <u>under stress conditions</u> in particular, such as fish in captivity and rarely in wild fish.
 - Apply other five strains adjacent River, not R15
 - Monitoring groundwater and surface water to confirm microbes not migrating to River

Microbial Treatment Impact Assessment - Mitigations

- Indigenous monitor onsite during injection
- Monitoring groundwater and surface water to confirm microbes not migrating to River
- No vehicle traffic to site to protect watercourses and Site, mitigation approach:
 - Helicopter used to transport equipment and supplies to and from Site
 - Foot traffic only to and from site
- No animal attractants left at Site overnight:
 - Food and waste
 - Gasoline fuels, attract bears

Microbial Treatment Impact Assessment - Mitigations

- Hand equipment used to inject microbe treatment
- End-of-pipe fish protection screens for small water intakes in freshwater
- Spill kits and secondary containment for on site fuels
- Parks Canada Wildlife Flight Guidelines
- DFO Interim code of practice
- Equipment cleaning and disinfection for Whirling Disease

Microbial Injection

- SIMPCW Resources was Project Partner
- 1st Injection, September 2024 microbe injection across the Site.
 - Indigenous monitoring was onsite for injections, provided input along the injection.
 - Helicopter used to transport equipment and supplies to Site.
 - All equipment was operated by hand to minimize environmental impacts.
 - Microbes sensitive to pressure, application pressure set to <= 1000 psi.
 - Shallow impacts, 0 2 mbgs, ideal for hand equipment injection of microbe treatment for the four areas of the Site; ROW, Peat Area, Sand and Clay. Injection spacing and pressures varied based on area.
 - Soil and groundwater testing conducted 3 weeks after injection.
- 2nd Injection, June 2025 microbe injection across the Site.
 - Higher pressure injection and closer spacing of injection points for areas with clay soil.
 - R15 strain added where to target remediation of PAH impacts. R15 was not injected to soil adjacent River.
 - Soil and groundwater testing conducted 5 weeks after injection.

Remediation Area - ROW:

- Soil clay/gravel fill
- n 0.3
- $K \sim 1x10^{-5} \text{ to } 1x10^{-6} \text{ m/s}$
- No ground disturbance within 5m of underground pipelines
- Surface application was completed within 5 m of the pipe, and injection was completed outside of this distance

Remediation Area - Marsh:

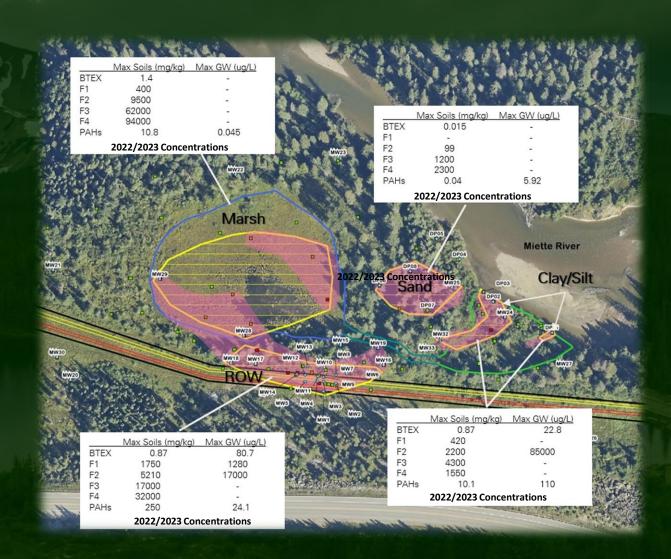
- Soil Peat
- n 0.4 0.5
- $K \sim 1x10^{-5} \text{ to } 1x10^{-4} \text{ m/s}$
- Microbe solution injected at low pressure with coarse spacing

Remediation Area – Sand Deposit:

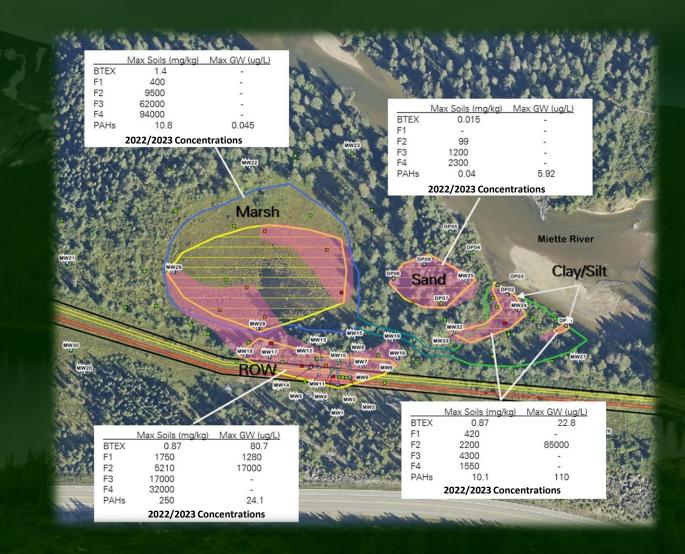
- Soil Sand
- n ~ 0.3
- $K \sim 1 \times 10^{-4} \text{ to } 1 \times 10^{-5} \text{ m/s}$
- Microbe solution injected at low pressure with coarse spacing

Remediation Area – Clay Deposit:

- Soil Clay / Silt
- n ~ 0.4
- $K \le 1x10^{-7} \text{ m/s}$
- Microbe solution injected at higher pressure with finer spacing


Microbial Treatment

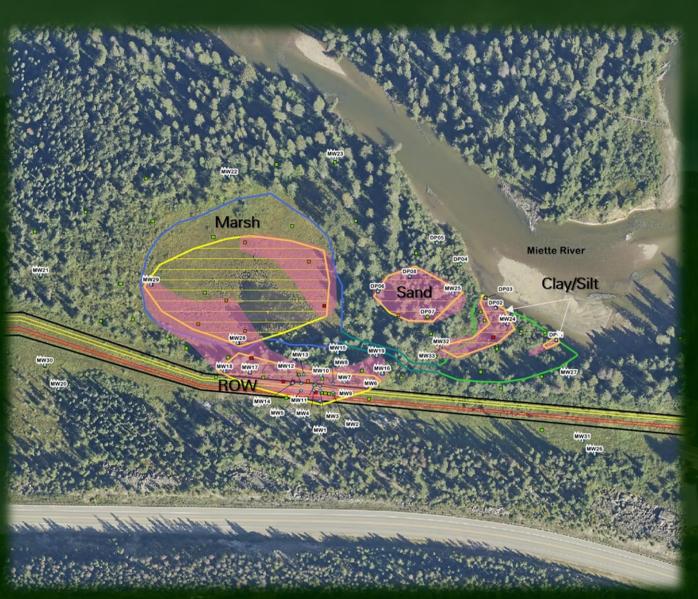
- 2024
 - 1st Injection September 2024, was delayed because of July wildfire
 - Soil and Groundwater Sampling October 2024
 - Evaluation of Results November 2024
- 2025
 - Planning 2025 Injections January 2025, adjustment/improvement of application considered
 - 2nd Injection June 2025
 - 1st 2025 Soil and Groundwater Sampling July 2025
 - Evaluation of Results July / August 2025
 - 2nd 2025 Soil and Groundwater Sampling September 2025


October 2024 Results, 3 Weeks Following 1st Injection

- 30 80 % reduction (60% Average) of hydrocarbon (BTEX, F1-F4) impacts observed across Site.
- Most Reductions observed in Marsh and Sand Areas
- No significant reduction observed at the Clay area
- No significant reduction in PAHs observed

2nd Injection – June 2025

- Injected 2nd round over entire Site
- Applied higher injection pressure and fine spacing in Clay areas to increase microbe contact with impacts.
- Increased R15 % to address PAH impacts at ROW and Clay areas but avoided applying adjacent River.


July 2025 Results, 5 Weeks Following 2nd Injection

- Continued concentration (BTEX, F1-F4) reductions, 50% to 100%.
- In Clay areas, hydrocarbon impacts reduced 40% 100%, indicating success of higher-pressure injection and closer injection point spacing.
- PAH concentrations, most samples had 40% to 100% concentration reductions. 30% of PAH samples had no change compared to 2024 showing success of increasing R15%
- 70% of Site now remediated to CCME Guidelines.
- Addition of R15 resulted in reduced PAH concentrations

Sept 2025 Results, 3 Months Following 2nd Injection

- 30 to 100% reduction in PHCs in soil, lowest reduction at one location at ROW and one location at Clay area
- 20 to 100% reduction in PAHs in soil in most locations, except one location on ROW and one location at Clay area, few locations had increases of naphthalene and pyrene
- 20 to 90% reduction of PAHs in groundwater, except at ROW, increases of naphthalene and pyrene in Sept 2025 in a few locations
- Confirmed, addition of R15 resulted in reduced PAH concentrations
- Another 5 10% remediated

Summary

- Microbiate proved effective at remediating site impacts:
 - Initially had significant reductions with high concentrations (e.g. 60,000 mg/kg to 5000 mg/kg in one month)
 - Continued to see 30 60% reductions as concentrations decrease, can see less dramatic reductions with lower concentrations
 - R15 required for PAHs impacts
- Application approached depended on hydrogeologic conditions (e.g. peat vs clay)
- Ecologically sensitive sites typically restrict use of mechanized equipment, more manual approach needed and are effective

Next Steps

- Continue soil and groundwater monitoring in 2026
- One more microbe treatment:
 - Consider subsurface injection at ROW, ground disturbance plan, daylighting pipelines by hand
 - Clay areas, same approach with high pressure injection and fine spacing
 - Customizing nutrient and amendments where nutrients are naturally low. i.e. ROW
 - Customizing nutrient and amendments as concentrations continue decreasing, may be needed to achieve site closure
- Microbe treatment shows promise for complete Site remediation. If not, will consider other options in select areas.

