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Project Overview

 Airborne Electromagnetic (AEM) and other geophysical methods are
regularly used to inform groundwater model hydrogeology

* Geophysical data offer insights into the hydrogeologic structure of the
subsurtace, which allows for the construction of models that include more
realistic heterogeneities; however, does the incorporated information
from AEM reduce the uncertainty of model forecasts?

* We quantitatively assess the usefulness of AEM data in constraining model
hydrogeology to represent observed hydraulic responses.

* To do this, we determined how different model parameters reduce
uncertainty for two MODFLOW models created for the Shellmound, MS
Groundwater Transfer and Injection Project (G-TIP)

* One of which used AEM data to highly parameterize the model, and another that did
not.
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Background

* 43,000 flight-line-kilometers of AEM
were flown as part of the update to the

Mississippi Embayment Regional Aquifer
Study (MERAS) (Minsley et al. 2021)
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* Increased density of data in the
Shellmound area (Minsley et al. 2021)

* Created several datasets, including
facies classes based on resistivity,
aquifer thickness, surficial connectivity,
connectivity MRVA and subcropping
Tertiary (Minsley et al. 2021)
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Regional Hydrogeology
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Hydrogeology & Model Structure
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Varying Discretization and Hydrologic Properties Between Models
18-Layer Model: AEM Data Used More in Model Parameterization
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Methodology Overview

Adjusted models to predict future G-TIP conditions

Calculated and added G-TIP Composite Head forecasts as PEST++ observations for
forecast variance reduction calculations

Calculated flow path lengths using MODPATH and added those forecasts as PEST++
observations for forecast variance reduction calculations

Spatially sorted parameters so the models would have the same parameter groups

Calculated the Jacobian matrix with PESTPP-GLM

Calculated the forecast variance reduction using the PyEmu Python libary



Model Forecasts VI .
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Mathematical Background

*From Fienen et al. 2025
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Mathematical Background
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Modeling Methods

pst = pyemu.Pst(pst_file)
PyEmu

jco = pyemu.Jco.from_binary(jco_file)
obscov = pyemu.Cov.from_observation data(pst)
wanted_forecast _names = [gtip_composite 1, flow_path_1]

sc = pyemu.Schur(pst=pst, jco=jco, obscov=0obscoy,
forecasts=wanted forecast_names)

par_contrib = sc.get_par_group_contribution()



Forecast uncertainty reduction for individual head composite

forecasts;
Overall trends for forecast uncertainty reduction for head composite

forecasts;
Forecast uncertainty reduction for individual flow path length

forecasts;
Overall trends for forecast uncertainty reduction for flow path length

forecasts.
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18-Layer Model - Head Composite Forecasts: Percent Variance Reduction
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8-Layer Model - Head Composite Forecasts: Percent Variance Reduction

G-TIP Head Composite: SP 217
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Percent of Forecasts where Certain Parameter Group is the

Most Important
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8-Layer Model - Flow Path Length Forecasts: Percent Variance Reduction
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Percent of Forecasts where Certain Parameter Group is the

Most Important

18-Layer Model: Flow Paths Lengths Forecasts 8-Layer Model: Flow Paths Lengths Forecasts
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Summary and Conclusions

* 100% of composite head forecasts for the 18-layer model were most reliant on

the MRVA Horizontal Hydraulic Conductivity parameter group.

 The MRVA Horizontal Hydraulic Conductivity group was highly parameterized using AEM data.

* Because a parameter group with incorporated AEM data was the most important for reducing uncertainty,
the AEM was valuable for reducing model forecast uncertainty.

* 92% of composite head forecasts for the 8-layer model were most reliant on the
streambed conductivity parameter group.

* Since the AEM data was not utilized to introduce complexity in the model for calibration purposes,
understanding streambed conductance proved to be more critical than knowing the hydraulic conductivity of
the model layers.

* When AEM data is used for refining model hydrogeology, the parameters where
AEM is used become more important for reducing model forecast uncertainty.



Summary and Conclusions

* 52% of flow path forecasts for the 18-layer model were most reliant on the
MRVA Horizontal Hydraulic Conductivity parameter group.

* 57% of flow path forecasts for the 8-layer model were most reliant on the
Tertiary Horizontal Hydraulic Conductivity parameter group.

* The MRVA Horizontal Hydraulic Conductivity parameter group was the most
important parameter group for reducing forecast uncertainty for 52% of the
flow paths in the 18-layer model, compared to 3% of the flow paths in the
8-layer model.

* When AEM data was used to increase the vertical discretization of the
hydrogeology, the parameters that incorporated AEM data became more
important in reducing model forecast uncertainty.
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