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Project Overview

• Airborne Electromagnetic (AEM) and other geophysical methods are 
regularly used to inform groundwater model hydrogeology

• Geophysical data offer insights into the hydrogeologic structure of the 
subsurface, which allows for the construction of models that include more 
realistic heterogeneities; however, does the incorporated information 
from AEM reduce the uncertainty of model forecasts?

• We quantitatively assess the usefulness of AEM data in constraining model 
hydrogeology to represent observed hydraulic responses.

• To do this, we determined how different model parameters reduce 
uncertainty for two MODFLOW models created for the Shellmound, MS 
Groundwater Transfer and Injection Project (G-TIP)
• One of which used AEM data to highly parameterize the model, and another that did 

not.
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• Shellmound Groundwater Modeling 
Study (Guira et al. 2025)
• Inset model of the Delta Model

• Models were created to predict 
outcomes of the Groundwater 
Transfer and Injection Pilot (G-TIP) 
project

• Created two groundwater models 
with varying discretization and 
parameterization

Background

Modified from Guira et al. 2025
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Groundwater Transfer and Injection Pilot (G-TIP) 
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n • 43,000 flight-line-kilometers of AEM 
were flown as part of the update to the 
Mississippi Embayment Regional Aquifer 
Study (MERAS) (Minsley et al. 2021)

• Increased density of data in the 
Shellmound area (Minsley et al. 2021)

• Created several datasets, including 
facies classes based on resistivity, 
aquifer thickness, surficial connectivity, 
connectivity MRVA and subcropping
Tertiary (Minsley et al. 2021)

Background

*Modified from Minsley et al. 2021



Regional Hydrogeology

*From Pugh 2025.



Time-stratigraphic unit
Group Formation

Regional 
geohydrologic unit

18-Layer 
Model

8-Layer 
ModelEra System Series

C
en

o
zo

ic

Quaternary
Holocene

--
Alluvium, terrace, and 

loess deposits

Mississippi River 
Valley, Ouachita-
Saline River, and 
Red River alluvial 

aquifers

1 to 8 1

Pleistocene
Te

rt
ia

ry

Oligocene Vicksburg Vicksburg Formation Vicksburg-Jackson 
confining unit

Missing in Shellmound

Eo
ce

n
e

Jackson Jackson Formation

Claiborne

Cockfield Formation
Upper Claiborne 

aquifer
Missing in Shellmound

Cook Mountain 
Formation

Middle Claiborne 
confining unit

9 to 18* 2 to 8*

Sparta Sand
Middle Claiborne 

aquifer
Zilpha Clay, Winona 

Sand, Tallahata, 
Formation

Lower Claiborne 
confining unit

Meridian Sand 
Member

Lower Claiborne 
aquifer

Wilcox Undifferentiated
Upper, middle, and 

lower Wilcox 
aquifers

Hydrogeology & Model Structure

Modified from Guira et al. 2025





Methodology Overview

• Adjusted models to predict future G-TIP conditions

• Calculated and added G-TIP Composite Head forecasts as PEST++ observations for 
forecast variance reduction calculations

• Calculated flow path lengths using MODPATH and added those forecasts as PEST++ 
observations for forecast variance reduction calculations

• Spatially sorted parameters so the models would have the same parameter groups

• Calculated the Jacobian matrix with PESTPP-GLM

• Calculated the forecast variance reduction using the PyEmu Python libary



Model Forecasts 

• G-TIP Wells Composite Head 
Forecasts 
• Mean head of wells surrounding 

extraction/injection wells
• 1 forecast for every future stress 

period (141 forecasts)
• Composite heads were added as 

zero-weight PEST observations

• Flow Path Length Forecasts
• MODPATH was for future stress 

periods 
• Particles started at the 

Tallahatchie River and the 
injection well (1800 
particles/forecasts)

• Total path length was used as a 
PEST zero-weight observations



Σθ: prior covariance for the parameters 
Σθ: posterior covariance for the parameters after updating with new observations 
T: transpose

Mathematical Background

Jacobian Matrix

Forecast 
Sensitivity

Schur 
Complement

J: Jacobian sensitivity matrix
zi: model observation i
θ : parameter j 

y: forecast sensitivity 

s: model forecast

*From Fienen et al. 2025



Mathematical Background

Prior 
Variance 

Posterior 
Variance 

Parameter
Importance

*From Fienen et al. 2025

σ𝑠
2: prior variance of a forecast

σ𝑠
2: posterior variance of a forecast 

parameter i known perfectly



Modeling Methods

PyEmu
pst = pyemu.Pst(pst_file)

jco = pyemu.Jco.from_binary(jco_file)

obscov = pyemu.Cov.from_observation_data(pst)

wanted_forecast_names = [gtip_composite_1, flow_path_1]

sc = pyemu.Schur(pst=pst, jco=jco, obscov=obscov, 
forecasts=wanted_forecast_names)

par_contrib = sc.get_par_group_contribution()



Results

• Forecast uncertainty reduction for individual head composite 
forecasts;

• Overall trends for forecast uncertainty reduction for head composite 
forecasts;

• Forecast uncertainty reduction for individual flow path length 
forecasts;

• Overall trends for forecast uncertainty reduction for flow path length 
forecasts.



The highest 4 parameter 
groups leading to variance 
reduction for the mean 
composite head around G-TIP 
wells.

• 12 random stress periods 
of 141

• MRVA KH always highest



The highest 4 parameter 
groups leading to variance 
reduction for the mean 
composite head around G-TIP 
wells.

• 12 random stress periods 
of 141

• Streambed conductivity is 
highest for the sampling



Percent of Forecasts where Certain Parameter Group is the 
Most Important



The highest 4 parameter 
groups leading to variance 
reduction for the flow path 
length forecasts.
• 12 random flow paths of 

1800
• No clear most important 

parameter group from this 
sampling

• MRVA KH is most important 
for several forecasts



The highest 4 parameter groups 
leading to variance reduction 
for the flow path length 
forecasts.
• 12 random flow paths of 

1800
• No clear most important 

parameter group from this 
sampling

• Tertiary KH is most important 
for several forecasts



Percent of Forecasts where Certain Parameter Group is the 
Most Important



Summary and Conclusions

• 100% of composite head forecasts for the 18-layer model were most reliant on 
the MRVA Horizontal Hydraulic Conductivity parameter group.
• The MRVA Horizontal Hydraulic Conductivity group was highly parameterized using AEM data. 

• Because a parameter group with incorporated AEM data was the most important for reducing uncertainty, 
the AEM was valuable for reducing model forecast uncertainty.

• 92% of composite head forecasts for the 8-layer model were most reliant on the 
streambed conductivity parameter group.
• Since the AEM data was not utilized to introduce complexity in the model for calibration purposes, 

understanding streambed conductance proved to be more critical than knowing the hydraulic conductivity of 
the model layers. 

• When AEM data is used for refining model hydrogeology, the parameters where 
AEM is used become more important for reducing model forecast uncertainty.



Summary and Conclusions

• 52% of flow path forecasts for the 18-layer model were most reliant on the 
MRVA Horizontal Hydraulic Conductivity parameter group.

• 57% of flow path forecasts for the 8-layer model were most reliant on the 
Tertiary Horizontal Hydraulic Conductivity parameter group.

• The MRVA Horizontal Hydraulic Conductivity parameter group was the most 
important parameter group for reducing forecast uncertainty for 52% of the 
flow paths in the 18-layer model, compared to 3% of the flow paths in the 
8-layer model.

• When AEM data was used to increase the vertical discretization of the 
hydrogeology, the parameters that incorporated AEM data became more 
important in reducing model forecast uncertainty.
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