

Subsoil Salinity Tool (SST)

Technical Manual and FAQ

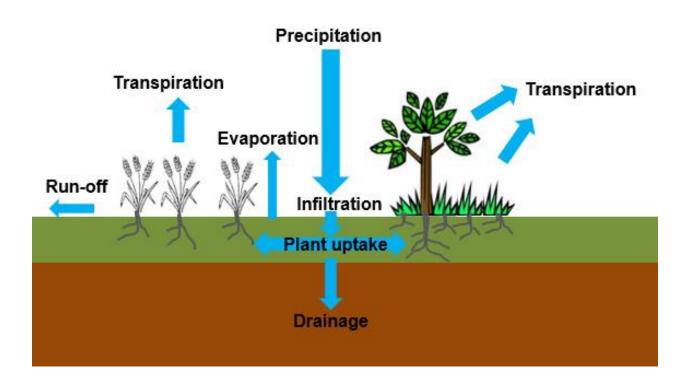
Greg Huber, M.Sc., P.Eng., PMP Anthony Knafla, M.Sc., P.Biol, DABT

RemTech 2025 –
PTAC Remediation Reclamation Session
October 15, 2025

Presentation Overview

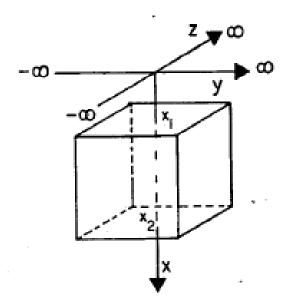
- Version 3.0 Technical Manual
 - Purpose and Contents
 - Examples from different sections
 - General Modeling
 - Chloride
 - SAR/sodium
- SST FAQ (Frequently Asked Questions)
- SST Courses

SST Technical Manual: Contents

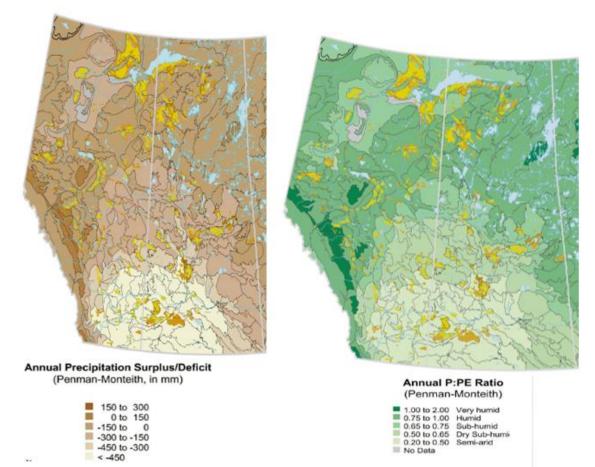

- Existing 'User Manual' focuses on use of tool
- 'Technical Manual' provides additional supporting detail for the algorithms and modeling approach used in the SST
- Divided into four main sections
 - General Modeling Info
 - Chloride Modeling
 - SAR/Sodium Modeling
 - SAR Effects on Soil

	PAGE #
1 GENERAL MODELING INFORMATION	
1.1 Introduction to Software Models	
1.1.1 LEACHM	
1.1.2 3DADE	
1.2 Modeling of Climate, Water Balance, and Drainage Rate	
1.2.1 Climate Regions and Subregions of Alberta	
1.2.2 Estimating Water Balance	
1.2.3 Climate and Annual Soil Moisture Surplus/Deficit	
1.2.4 Drainage Rate Implementation in SST and LEACHM	8
1.3 Site Data to Support Modeling	10
1.3.1 Correlations Between Saturation Percentage Data and Soil Texture	
1.3.2 Vertical Hydraulic Gradient Calculations	
2 CHLORIDE TRANSPORT MODELING	
2.1 Principle of Superposition and Linear Systems	
2.1.1 Superposition within the SST	
2.1.2 Linear Scaling within the SST	
2.2 Vertical Transport - LEACHP Modeling Details	
2.2.1 LEACHP Basis and Application for the SST	20
2.2.2 LEACHP Parameterization and Implementation within the SST	
2.3 Lateral Transport - 3DADE Modeling Details	24
2.3.1 3DADE Basis and Application for the SST	
2.3.2 3DADE Results Interpretation	21
2.4.1 Vertical Saturated Travel Time and Distance 2.4.2 Lateral Attenuation During Saturated Drainage to DUA	
2.4.2 Lateral Attenuation During Saturated Drainage to DOA 2.5 Multi-Step DF3 / Summers Dilution Model for DUA.	
2.5.1 Single SubArea	
2.5.2 Multiple SubAreas	
2.5.2 Multiple Sub-reas 2.6 Water Table Depth and Unsaturation Effects on Upward Migration to the Root Zone	
2.6.1 Water Content and Water Table Relationships	40
2.6.2 Refined Modeling with Deeper Water Tables	
2.7 Neural Network Adjustment for FAL	
2.7.1 Potential for Over-Conservatism with Multiple SubAreas	
2.7.2 FAL Correction Algorithm for Multiple SubAreas	
2.8 Dugout Adjustment Factor Algorithm for Irrigation / Livestock Watering	40
2.8.1 Dugout Sizing	50
2.8.2 Dugout Mixing Calculation	
2.8.3 Dugout Irrigation Considerations for SAR/Sodium.	
2.8.4 Dugout Pathway Exclusion	
3 SAR AND SODIUM TRANSPORT MODELING	
3.1 General Considerations for Cation Transport	
3.1.1 Cation Types and Properties	
3.1.2 Cation Depth Profile Examples	
3.1.3 Upward Sodium Migration.	
3.1.4 Software Model for Cation Transport	59
3.1.5 Cation Transport Modelling Example	
3.2 Cation Exchange Effects	
3.2.1 Cation Exchange Capacity	63
3.2.2 Exchangeable Cations	64
3.2.3 Cation Exchange Reactions and Selectivity Coefficients	66
3.3 Sodium Transport Modelling	69
3.3.1 Saturated Paste vs Soil Solution Conversions	69
3.3.2 Sodium, Chloride, and SAR Transport Comparisons	71
3.3.3 Attenuation of Sodium Relative to Chloride	73
3.3.4 Calcium and Magnesium Effects	77

General Modeling Information

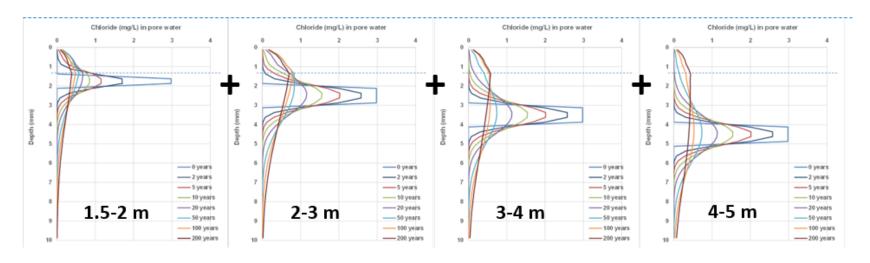

Vertical Transport Modeling

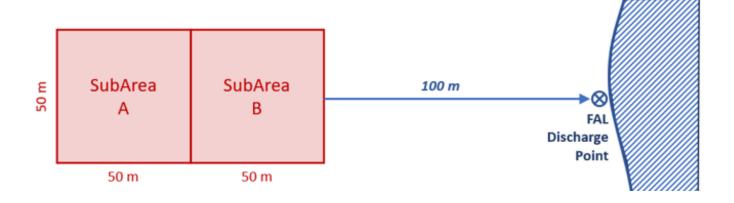
- Discusses details of main vertical transport model (LEACHM) and assumptions
- Complex 1-dimensional model incorporating many aspects of climate, soil, water, and solute transport


Horizontal Transport Modeling

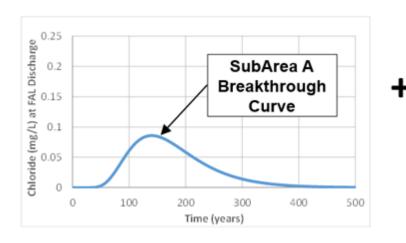
- Discusses details of main horizontal transport model (3DADE) and assumptions
- Simpler model, but considers diffusion, advection, and dispersion in three-dimensions.
- Used for both lateral transport modeling (eg, to aquatic receptors), and for lateral smearing during vertical transport (eg, to Domestic Use Aquifer)

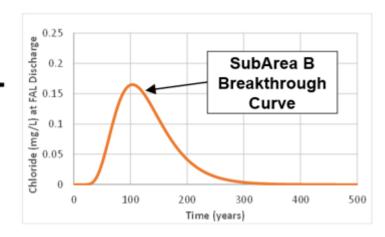
Climate

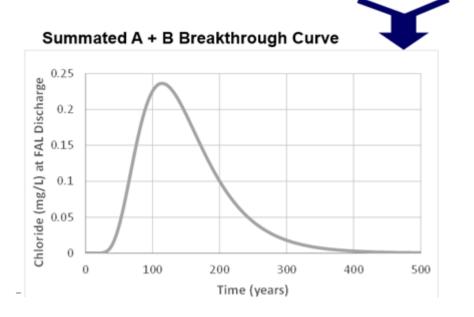

- Additional detail provided for the climate information used for transport modeling
 - Factors such as Precipitation (P) and Potential Evapotranspiration (PE)
- Affects water balance, drainage rates, and risk to various receptors such as root-zone and DUA



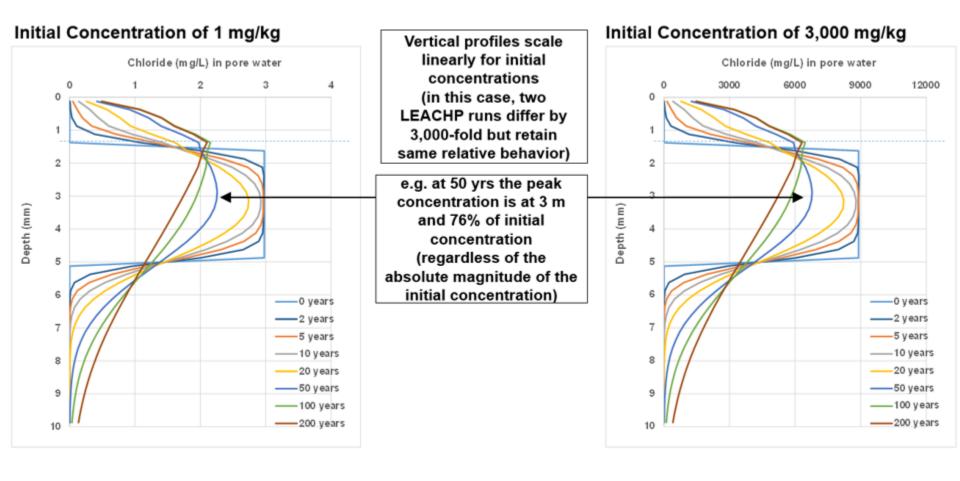
Chloride Transport Modeling


Principle of Superposition


- Key concept to allow wide range of scenarios to be modeled by breaking them into small pieces, modeling each piece, and then recombining
 - Broad application both vertically (top) and laterally (bottom)



Principle of Superposition: Horizontal



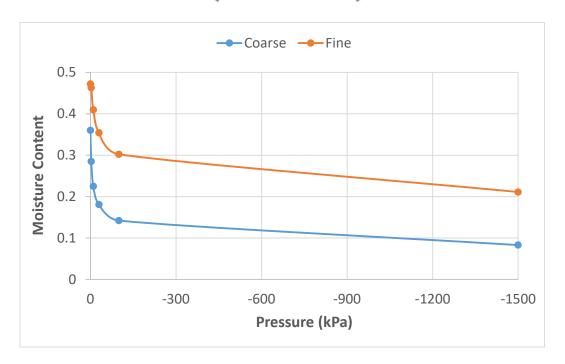
 Tool would not be possible to implement in any practical way without this concept (except for very simple scenarios)

Linear Scaling

- Another key modeling concept allowing runs at standardized concentrations to be performed and concentrations then 'scaled' to actual site conditions
 - Like superposition, the SST would not be possible to implement without this technique

LEACHM Details

- LEACHM is based on solving complex differential equations to model vertical flow of both water and solute
 - LEACHP sub-module most suitable for SST and chloride aspects
- 'Richards Equation' for water flow
 - Super-messy (glad the LEACHP program does it...)
 - Uses parameters such as water capacity, pressure head, vertical distance


$$\frac{\partial h}{\partial t}C(\theta) = \frac{\partial}{\partial z}\left[K(\theta)\frac{\partial H}{\partial z}\right] - U(z,t)$$

- 'Convection-Dispersion Equation' for solute flow
 - Also super-messy
 - Uses parameters such as concentrations, diffusion coefficients

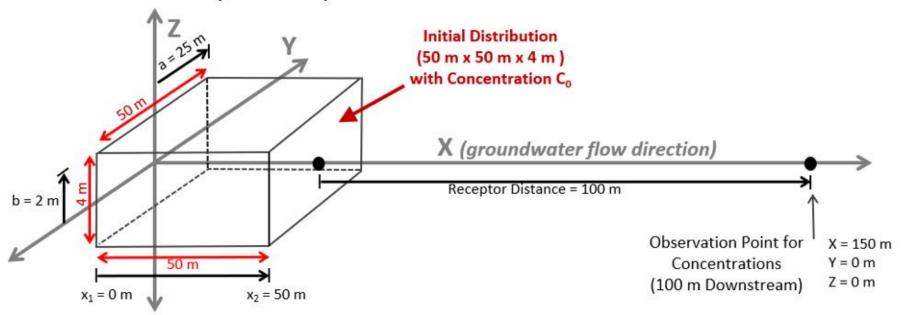
$$\frac{\partial(\theta c)}{\partial t} = \frac{\partial}{\partial z} \left[\theta D(\theta, q) \frac{\partial c}{\partial z} - qc \right]$$

LEACHP Details (cont'd)

- Other parameters used in LEACHP modeling also discussed
 - bulk density, porosity
 - hydraulic conductivity
 - moisture retention

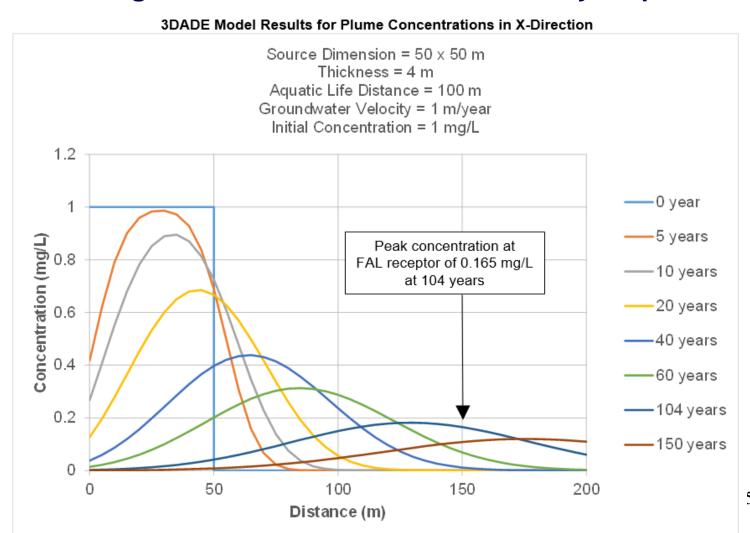
Parameters	Fine Texture (median < 75 µm)	Coarse Texture (median > 75 <u>µm</u>)
Bulk Density (g/cm³)	1.4	1.7
Total Porosity	0.47	0.36
Hydraulic Conductivity at Saturation (mm/d)	0.88	8.8
Hydraulic Conductivity at Saturation (m/s)	1.0 x 10 ⁻⁸	1.0 x 10 ⁻⁷
Campbell's Parameter 'a'	-3.47	-0.938
Campbell's Parameter 'b'	7.54	5.058
Moisture Content at -3 kPa	0.463	0.285
Moisture Content at -10 kPa	0.410	0.225
Moisture Content at -30 kPa	0.354	0.181
Moisture Content at -100 kPa	0.302	0.142
Moisture Content at -1500 kPa	0.211	0.083

3DADE Details


- 3DADE used to model lateral transport of water and solute over three dimensions
- Primary use in SST is for lateral transport to aquatic life receptors (FAL)
- Based on defining parameters for different subareas such as:
 - Source dimensions

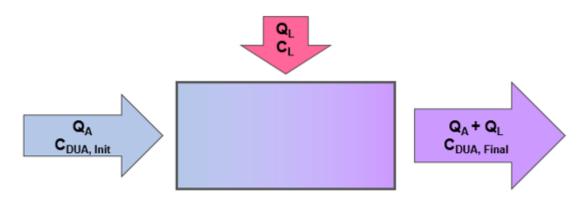
- distances to receptors

groundwater velocity


- impact thicknesses

3DADE Model Inputs for an Impact Source Dimension of 50 x 50 m and FAL distance of 100 m

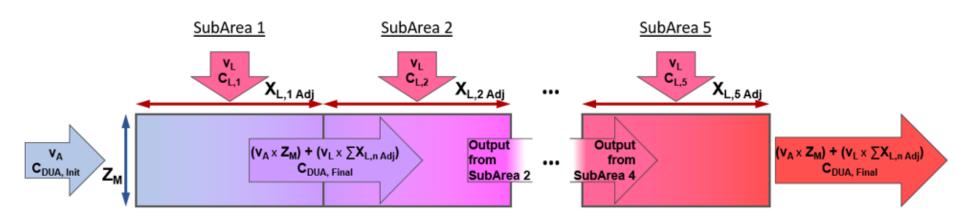
3DADE Results Interpretation


- 3DADE output processed to provide "Breakthrough Curves" which are used throughout the SST for guideline calculation
- Peak breakthrough concentrations and times are key outputs

DUA Guideline Calculations

- DUA pathway is a complex pathway where both LEACHP and 3DADE components are used for transport (3-D)
- Combined with additional 'dilution' calculations into DUA
 - Dilution calculations used in SST are a more generalized implementation of "DF3" used in Tier 1 / Tier 2 model
- Single Subarea implementation:

Summers Mixing Model (Mass Balance) Approach for DUA Dilution



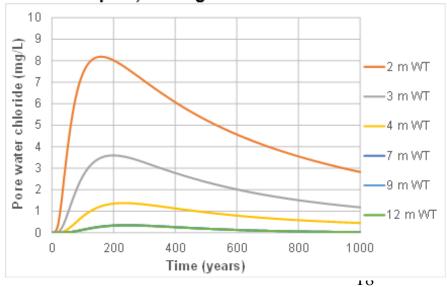
$$C_{DUA,Final} = \frac{Q_L \times C_L + Q_A \times C_{DUA,Init}}{Q_L + Q_A}$$

DUA Guideline Calculations (cont'd)

- Also implemented for multiple subareas
- More complex calculations, but necessary for most sites
- Algorithm ensures that DUA is protected not only below each subarea, but for the combined loading of all subareas

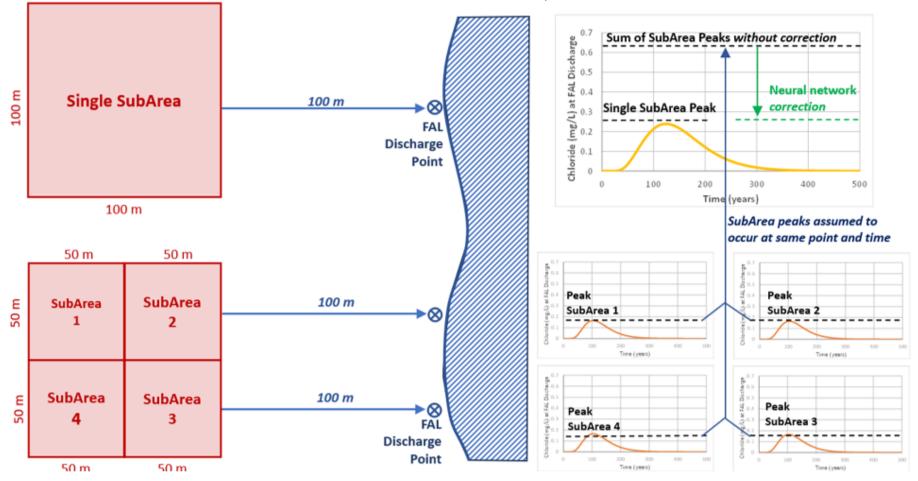
Stepwise Summers Mixing Model for DUA Dilution of Multiple SubAreas

$$C_{DUA,Final} = \frac{(v_A \times Z_m) \times C_{DUA,Init} + v_L \times \sum_{1}^{n} (C_{L,n} \times X_{L,n \, Adj})}{(v_A \times Z_m) + v_L \times \sum_{1}^{n} (X_{L,n \, Adj})}$$


Water Table Effects

- Version 3.0 of SST incorporated much more complex set of algorithms for upward chloride transport into root-zone taking water-table depth into account more directly
- Deeper water table → drier soils → slower upward diffusion
 - More pronounced effect for coarse soils

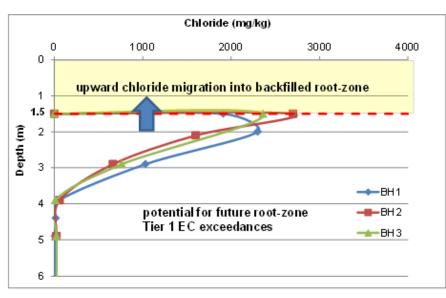
Chloride Concentrations at 1.5 m (Root Zone) 1 mm/year Down, Fine Soil 4 to 5 m Impact, 100 mg/L Initial Chloride

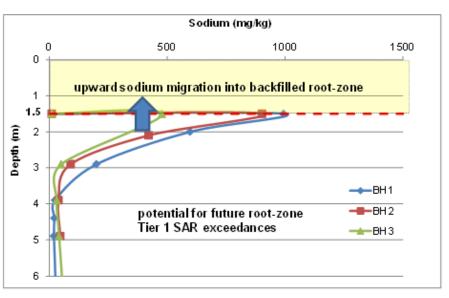

Chloride Concentrations at 1.5 m (Root Zone) 2 mm/year Down, Coarse Soil 4 to 5 m Impact, 100 mg/L Initial Chloride

Aquatic Life Transport

- Complex approach used for multiple subareas for FAL
- Includes a neural network to remove over-conservatism

Example of FAL Over-Conservatism for Multiple SubAreas in Close Proximity to FAL Receptor

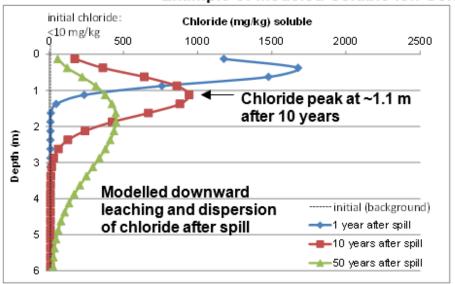


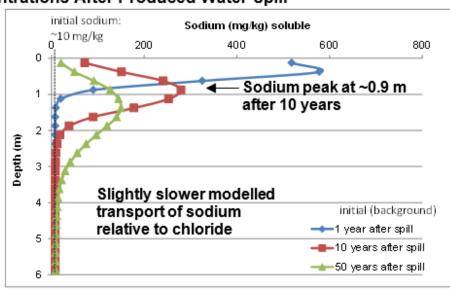

SAR and Sodium Transport Modeling

Sodium Transport

- Sodium transport modelled in SST Version 3.0
 - Primarily modelled upward into root-zone as key pathway
 - Relevant to potential future root-zone SAR exceedances

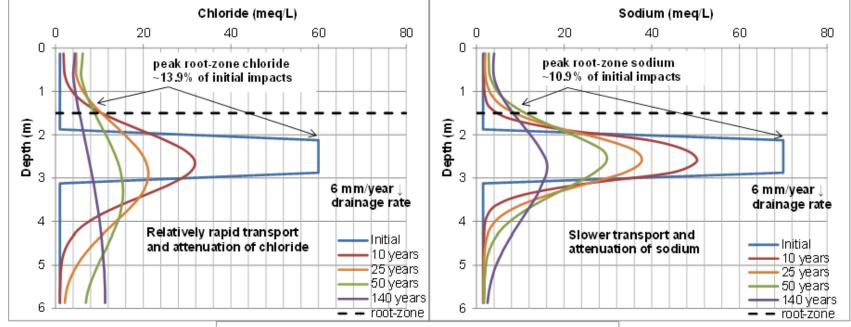
Example Chloride and Sodium Depth Profiles After 1.5 m Root-Zone Excavation

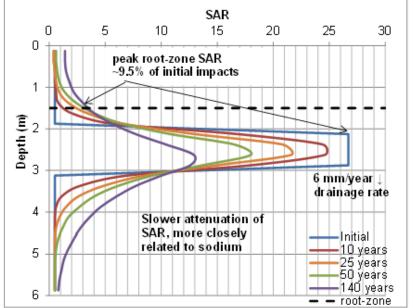



- Sodium modeled similar to chloride, but with adjustments due to cation exchange effects
 - Substantial more complexity, handled in LEACHC sub-module

Sodium Transport (cont'd)

- Cation exchange reactions result in slowing of sodium transport relative to chloride
 - Sodium and calcium exchange on cation exchange complex
 adsorbed calcium + NaCl ↔ adsorbed sodium + CaCl₂
- Net effect: chloride gets further, faster
 - Sodium has more tendency to linger closer to initial source area
 - Elevated SAR can persist longer than elevated chloride or sodium


Example of Modeled Soluble Ion Concentrations After Produced Water Spill



Example of Modeled Sodium, Chloride, and SAR transport

(initial impacts 2-3 m with CEC=240 meg/kg)

 Chloride, sodium, and SAR all modeled / estimated in SST for guideline calculations

Sodium Guideline Calcs

- Examples provided of the process used to calculate subsoil sodium guidelines to protect root-zone from upward migration
 - Complex, multi-step calculation process (example of first steps below)

Parameter	Value	Source			
User-entered parameters					
Soil texture	Fine	User entered (>18% clay as per SST protocol). Assumed consistent for both root-zone and subsoil.			
Root-zone scenario	Excavate+backfill	User-entered			
Backfill average EC	1 dS/m	User-entered			
Backfill average SAR	1	User-entered			
Calculated parameters: Tier 1 SAR guideline and SAR buffer					
Root-zone Tier 1 SAR guideline	4	Previously calculated			
SAR buffer	4	Previously calculated			
Calculated parameters: Initial root-zone					
Initial backfill EC	1 dS/m	Previously calculated			
Initial backfill SAR	1	Previously calculated			
Initial backfill total cations	12 meq/L	Previously calculated			
Initial backfill sodium	2.21 meq/L	Previously calculated			
Initial backfill Ca+Mg	9.79 meq/L	Previously calculated			
Calculated parameters: Future root-zone					
Initial (Ca+Mg)1/2/Na in root-zone	13.84	Calculated from initial Ca+Mg concentrations (meq/L)			
Exponent for relative SAR vs Na increase	0.750	Calculated from fine regression (y=0.5338x ^{0.1292})			
Relative SAR increase (x-fold)	4	Equivalent to SAR buffer			
Relative sodium increase (x-fold)	6.36	Calculated from exponent and relative SAR increase (=41/0.75)			
Future root-zone sodium	14.06 meq/L	Based on initial sodium and relative sodium increase			
Future root-zone Ca+Mg	24.71 meq/L	Based on future SAR and sodium			
Future root-zone EC	3.23 dS/m	Calculated from future total cations			
Future root-zone SAR	4	Back-calculated as a check			

SAR Effects on Soil Structure

- Section 4 provides a comprehensive summary of the SAR research conducted over the last 10+ years to support subsoil SAR guideline derivation in SST Version 3.0
 - Wide range of topics including literature results, Alberta-specific soil core experiments, water table modeling, and guideline derivation process

4 SA	R EFFECTS ON SOIL STRUCTURE	96
4.1	SAR / EC / K _{sat} Relationships from Literature	97
4.2	K _{sat} Thresholds From Literature	100
4.3	Alberta Leaching Column Experiment Methodology	103
4.3.	· · · · · · · · · · · · · · · · · · ·	
4.3.	• ••	
4.4	Alberta Leaching Column Experiment Results	104
4.4.	• •	
4.4.	2 Unresponsive Clayey Soils	106
4.4.	• • • • • • • • • • • • • • • • • • • •	
4.4.	4 Unresponsive Coarse Soils	109
4.4.	•	
4.4.	6 Synthesis of Alberta Leaching Column Experiments	112
4.5	Combining Literature and Alberta Results for K _{sat} Thresholds	
4.6	Modeling Effects of Hydraulic Conductivity Loss on Water Table	
4.6.	· · · · · · · · · · · · · · · · · · ·	
4.6.	,	
4.7	Deriving Subsoil SAR Guidelines to Protect Soil Structure	127
4.7.	1 Acceptable K _{sat} Loss	127
4.7.	2 Conversions Between Solution EC/SAR and Saturated Paste EC/SAR	128
4.7.	3 Comparing Thresholds to Site Data – Current Day	130
4.7.		

SST Frequently Asked Questions (FAQ)

- A way for the SST user community to engage and get feedback on important topics / questions
- Process:
 - Send questions to SSTInfo@eqm.ca
 - Questions are announced on EEI LinkedIn page once complete
 - Question and Answer provided on FAQ page: https://www.eqm.ca/faq
- Answers to key questions will also involve regulatory vetting

SST Frequently Asked Questions (FAQ)

Six technical questions with vetted answers to be posted shortly:

- Is there a Tier 1 chloride guideline for soil?
- What is the chloride delineation objective for soil?
- When should I use the SST?
- How do I decide between a Tier 2A and Tier 2B SST assessment?
- Is 100 mg/kg chloride ever used as a site-specific remedial objective?
- How are SST guidelines used to evaluate confirmatory samples when performing an excavation?

SST Courses

Full Certification Course (3.5-day)

April 2026 – dates TBD

SST Overview Course (1-day) *NEW*

April 2026 – dates TBD

Advanced SST Techniques Course (1-day) *NEW*

April 2026 – dates TBD

For further information:

Visit our webpage at www.eqm.ca

Or contact SSTinfo@eqm.ca

Or visit our LinkedIn page

Acknowledgements

- Alberta Environment and Protected Areas
- Alberta Energy Regulator
- Petroleum Technology Alliance of Canada (PTAC)

Thank you!

SSTinfo@eqm.ca