CONVENTIONAL VS. PASSIVE MANAGEMENT OF NOXIOUS WEEDS FOR FINAL RECLAMATION OF INDUSTRIAL SITES IN THE BOREAL FOREST: A RISK MANAGEMENT-BASED APPROACH

Project team

NAIT: Amanda Schoonmaker, Ph.D., Andres Rolhauser, Ph.D., Noel Lockyer, BSc.

InnoTech Alberta: Stefan Schreiber, Ph.D.

Enviro Q&A Services: Chris Powter, M.Sc.

Vertex: Dean Mackenzie, Ph.D.

Why this project?

Management of noxious weeds in boreal forest reclamation

Need to control noxious weeds

Alberta's wellsite certification requires controlling noxious weeds: destroy prohibited, inhibit non-prohibited.

Herbicide use can backfire

Herbicide application is standard but risks harming non-target plants, potentially disrupting forest regeneration.

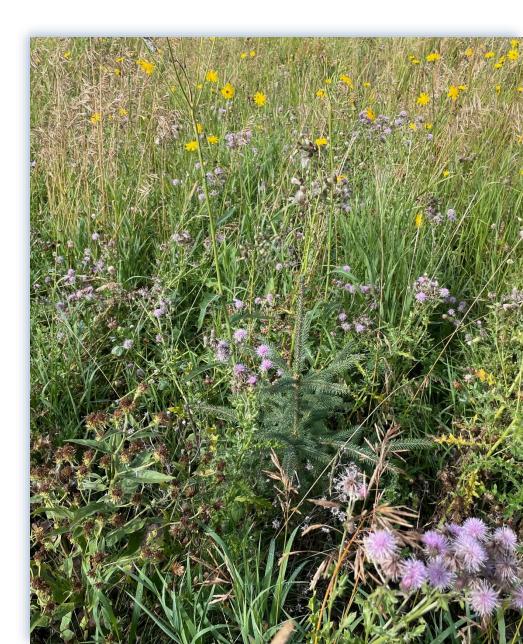
Public concerns

Herbicides are increasingly questioned due to chemical residues, effects on biodiversity, and contamination of soil and water.

And weeds can even bounce back

Our survey of 6- to 16-year-old **rec certified sites** showed that Canada thistle and perennial sow thistle were frequent (62% and 33%), with occasional high cover.

Management of regulated weeds in boreal forest reclamation


Some questions arise:

How effective are our current weed management strategies?

The balance of herbicide applications might be negative in the long term.

Are these species detrimental to the development of forest vegetation?

Regulated weeds are mostly ruderal and shade-intolerant herbs absent from mature forests.

What about other undesirable species?

Industrial use decreases soil quality

Industrial activities (such as wellsites) compact the soil, reduce organic matter, and disrupt its structure.

Current regulations and grass seeding?

Boreal forest reclamation criteria requires "a minimum of 25% canopy cover of herbaceous species".

Although current policy was intended to discourage grass seeding, the 25% herbaceous cover requirement could still be met using native grasses because of their commercial availability and rapid establishment on disturbed soils.

Grasses seem to "arrest" forest succession

Grasses often persist as dominant cover on reclaimed sites, but the mechanisms behind this persistence (e.g. competitive exclusion or altered soil conditions) remain poorly understood.

What about other undesirable species?

Some more questions:

How negative are grasses for forest reclamation?

High grass dominance and negative correlations with trees suggests that they are worse than noxious weeds.

Are current, broadleaf weed management approaches steering these sites toward grass-dominated trajectories?

Removing broadleaf weeds may leave open spaces and resources that fast-growing grasses can exploit.

Knowledge gaps and project objectives

1) Herbicide effectiveness

There is limited evidence, mostly based on chronosequences or having limited spatial scope, underscoring the need for **long-term**, representative trials.

OBJECTIVE 1 Evaluate the long-term effects of herbicide use on noxious weeds and forest regeneration on reclaimed sites across Alberta (**standard vs passive**).

2) Alternative strategies

Scarce data supporting alternatives to conventional weed management, such as mechanical site preparation or **vegetation-based light competition**.

OBJECTIVE 2 Evaluate the effects of planting density on canopy closure and natural weed suppression (**standard vs high density**).

Project benefits

Science-based weed management

Provide industry and land managers with credible data to refine or replace current broadleaf-herbicide practices.

Reduced herbicide reliance

Identify practical alternatives, such as higher planting density, to control weeds.

Better reclamation outcomes

Enhance the success and speed of boreal forest recovery, supporting biodiversity and soil health.

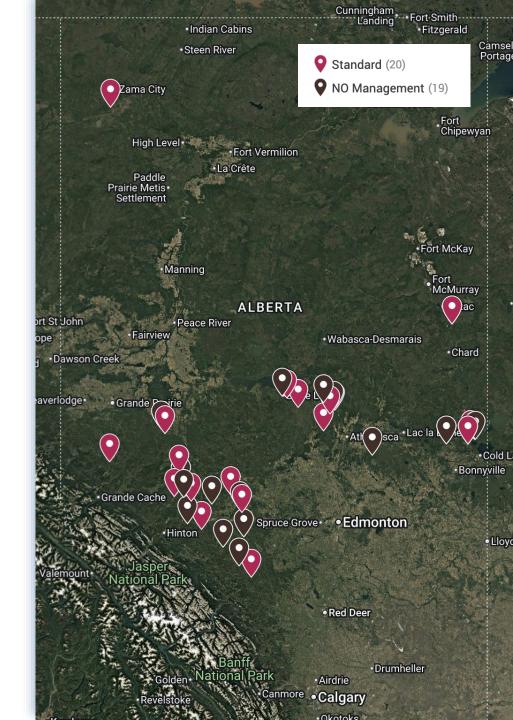
Policy support

Supply long-term evidence to guide updates to Alberta's weed-management and forest-reclamation policies.

Methodology

Experimental design

Site distribution and treatments


A total of **80 freshly reclaimed sites** (where final site contouring and soil placement have been completed) **across five subregions** will be randomly assigned to either standard (herbicide) or passive management treatments. Of these, **39 sites were surveyed in 2025**.

High-density planting subset

8 standard and 8 passive management sites will be planted with a higher than-usual density (4,000 stems per ha) of deciduous trees (balsam poplar, paper birch, and gray alder).

Long-term monitoring schedule

Sites will be monitored in years 1, 3, 5, and 10 following final soil placement and tree planting.

Measurements

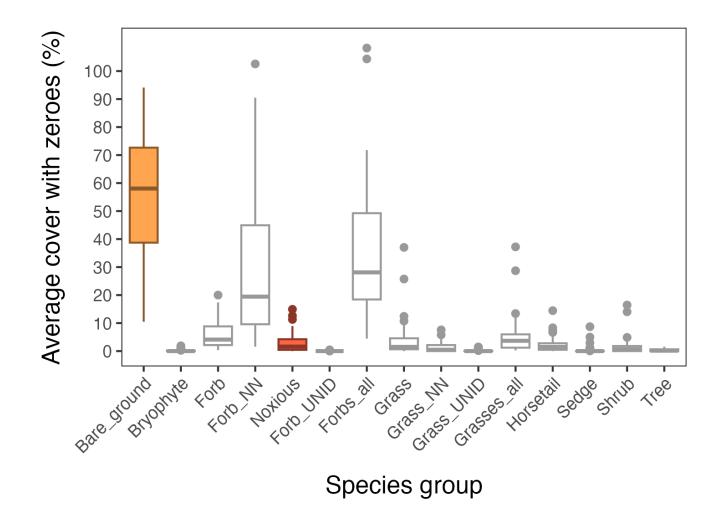
Long term vegetation surveys

Surveys use nine on-site **permanent plots** and 2 off-site transects per site. Methodology similar reclamation certification (ESRD, 2013), plus detailed vegetation community data.

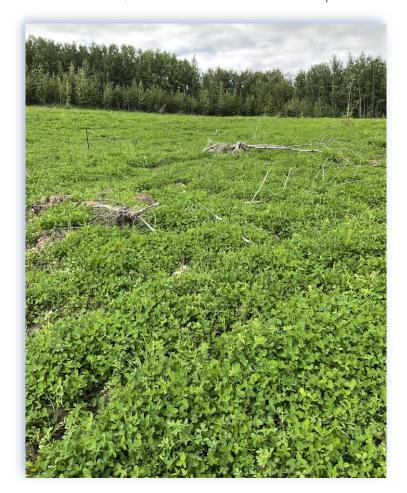
Soil physical and chemical analysis

Soil bulk density, texture, and chemical properties are analyzed from samples collected at five plots.

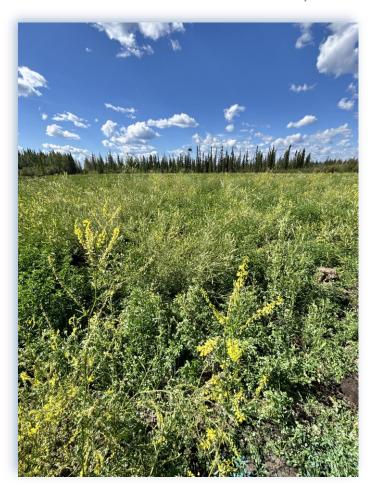
360° Imagery


For virtual field tour to illustrate vegetation dynamics.

Year 1 Results and Future Work


Bare ground and non-native weeds, though not the regulated kind

Dominant non-regulated, non-native forbs


Alsike clover (*Trifolium hybridum*)

97% of sites, 23% mean cover when present

Sweet clover (*Melilotus* spp.)

74% of sites, 20% mean cover when present

Hemp nettle (*Galeopsis tetrahit*)

51% of sites, 21% mean cover when present

Some noxious weeds were frequent, and some were also locally abundant

Species	Frequency (% of sites)	Mean cover when present (%)
Canada thistle	59	9
Perennial sow thistle	54	11
Scentless chamomile	23	7
Oxeye daisy	18	3
Tall buttercup	8	2
Yellow toadflax	5	5
Field bindweed	5	4
Common tansy	5	6

Canada thistle (Cirsium arvense)

Perennial sow thistle (Sonchus arvensis)

Native forbs can be frequent or locally abundant, but not both

Wild strawberry (*Fragaria virginiana*)

74% of sites, 1% mean cover when present

Nodding beggarticks (*Bidens cernua*)

3% of sites, 45% mean cover when present

Tall bluebells (*Mertensia paniculata*)

31% of sites, 12% mean cover when present

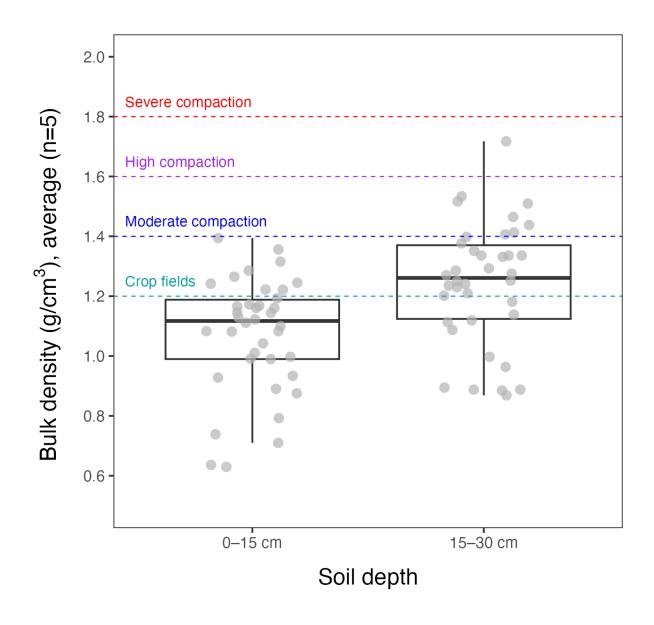
Competitive grasses are already present

Bluejoint - native (*Calamagrostis canadensis*)

56% of sites, 13% mean cover when present

Timothy - nonnative (*Phleum pratense*)

54% of sites, 4% mean cover when present


35 out of 38 sites had at least one of these species

Smooth brome - nonnative (*Bromus inermis*)

26% of sites, 4% mean cover when present

Some soil compaction, especially below 15 cm

Values are comparable to those in cultivated land.

Year-1 key points

- Dominant features are bare ground and nonnative, though non-regulated forbs.
- We found 8 noxious weeds, all of them nonprohibited: two were relatively frequent and abundant (Canada thistle and perennial sow thistle).
- Native forbs were frequent but not abundant.
 It is unclear how these will develop in future.
- Grasses known to dominate older reclaimed sites are widespread, even within the first year after final soil placement.

Future work

- Survey additional sites in 2026. This will not only increase our sample size, but also an additional year as successional starting point.
- Re-survey all sites at years 3, 5, and 10 to capture vegetation dynamics and outcomes over time.
- Install high-density experiment.
- Use long-term data to help refine herbicide use and alternative strategies.
- Engage with policymakers to translate findings into updates to Alberta's weed-management and forest-reclamation regulations.

Acknowledgements

We are most grateful to:

Our funders, Alberta Upstream Petroleum Research Fund, and the Natural Sciences and Engineering Research Council of Canada (NSERC).

Several companies that have provided sites to support this research: ARC Resources Ltd., Canadian Natural Resources Limited, Cenovus Energy Inc, ConocoPhillips Canada, Paramount Resources Ltd, and Peyto Exploration & Development Corp.

Many student research assistants and other staff, who helped with field measurements this summer.

Thank-you!

