



# Complex Bedrock Remediation Case Study: Dissolved Heavy Metals In-Situ Using Multiple Approaches

October 17, 2024 RemTech Bruce Tunnicliffe, M.A.Sc., P.Eng. VEI Contracting Inc.



## **Presentation Overview**

- Bedrock Remediation Difficulties
  - Why is it so difficult?
- Case Study
  - Bench-Scale (2018/19)
  - Pilot-Scale (2020)
  - Full-Scale (2023)
- Take Aways
- Questions





#### Bruce Tunnicliffe, P.Eng.

- University of Waterloo
  - Masters: Fractured Rock
- Founded Vertex in 2003
- Rebranded to VEI Contracting
  Inc. in 2024



Bruce @ UW, 1998

#### VEI Contracting Inc (formerly Vertex Environmental Inc.)







#### Vertex

- Specialized Contractor
- Works coast to coast



Treatment Systems





Bench-Scale Testing



## **Bedrock Remediation Difficulties**

The Difficulty with Bedrock Remediation

In 2013, the US Department of Defence (DoD) environmental research arm SERDP wrote:

"One of DoD's <u>most challenging</u> environmental restoration issues is determining how to deal with <u>contaminants</u> that have <u>seeped into the fractures in bedrock</u> and are a continuing source of groundwater contamination."

The U.S. Geological Survey noted:

"...remedial action is delayed or stymied by the complexity of contaminated fractured-rock aquifers"



#### The Difficulty with Bedrock Remediation



Fractured Rock Porosity = 1 to 10%

### Why So Challenging?

- Fracture Network
  - Can be complex
  - Thus Contaminant Distribution also complex
- Secondary Porosity
  - Contamination "soaks" into rock, difficult to get out
- Hard to Access / Expensive to Access
  - Easy for contaminant to enter fractures
  - Costly to access with remediation infrastructure
- Plume Length
  - Thin but Long Fractures = Large Plume
- Groundwater Flow Velocity
  - Can be fast compared to Porous Media



## Case Study – Background

- Chromium plating facility:
  - Underground tanks containing chromium plating solution
  - Tanks leaked, historical spills
- Neighbour completed Phase II ESA
  - Now everyone is suing everyone else
- Chrome contamination
  - Hexavalent chromium
  - Total chromium
- Client Situation
  - The client had very little money
  - The work was done in stages
- Bench, Pilot, Full-Scale Work





## **Project Time Line**

- Bench-Scale Testing:
  - 2018 to 2019
  - Using site groundwater and various amendments
- Pilot-Scale Testing
  - 2020
  - On-site testing of the best performing amendments
- Full-Scale
  - 2023
  - Injection infrastructure installation
  - Additional groundwater sampling completed
  - Injection of a Permeable Reactive Barrier (PRB) completed











|         | SUBSURFACE PROFILE SAMPLE |                                                                    |                |           |              |             |                            |                      |                  |
|---------|---------------------------|--------------------------------------------------------------------|----------------|-----------|--------------|-------------|----------------------------|----------------------|------------------|
| Depth   | Symbol                    | Description                                                        | Depth/Elev (m) | Sample ID | Analysed Y,N | Sample Type | Vapour<br>ppm<br>0 250 500 | LEL<br>%<br>0 50 100 | Backfill details |
| _ ft m_ |                           | Ground Surface                                                     | 61.99          |           |              |             |                            |                      |                  |
| 1-      |                           | SAND (Fill)<br>Brown, medium to coarse grained, some gravel, trace | 0.00           | MW-1-0.3  | Y            |             |                            |                      | 22 22            |
| 2-      |                           | CLAY: Slity<br>Reddish brown, some sand, trace gravel, moist       |                |           |              |             |                            |                      |                  |
| 2       |                           |                                                                    |                |           |              |             |                            |                      |                  |
|         |                           |                                                                    |                | MW-1-1.2  | Y            |             |                            |                      |                  |
| -       |                           |                                                                    |                |           |              |             |                            |                      |                  |
| 6       |                           |                                                                    |                |           |              |             |                            |                      |                  |
| 6       |                           |                                                                    |                |           |              |             |                            |                      |                  |
| 7-2     |                           |                                                                    | 59.86          | MW-1-2.1  | Y            |             |                            |                      |                  |
| -       |                           | WEATHERED SHALE<br>Red                                             | 4.10           |           |              |             |                            |                      |                  |
| 8       |                           |                                                                    |                |           |              |             |                            |                      |                  |
| 9-      |                           |                                                                    |                |           |              |             |                            |                      |                  |
| 103     |                           |                                                                    |                |           |              |             |                            |                      |                  |
| 11-     |                           |                                                                    |                |           |              |             |                            |                      |                  |
| ·· +    |                           |                                                                    |                |           |              |             |                            |                      |                  |
| 12      |                           |                                                                    |                |           |              |             |                            |                      |                  |



### Removal from Groundwater – Dissolved to Solid Phase

 $\begin{array}{c} \mathsf{Cr}(\mathsf{VI}) \\ \mathsf{H}_2\mathsf{CrO}_4 \\ \mathsf{CrO}_4^{2^-} \\ \mathsf{HCrO}_4^{-} \\ \mathsf{Cr}_2\mathsf{O}_7^{2^-} \end{array}$ 

Electron donors: Fe<sup>0</sup>(s) Fe<sup>2+</sup>(aq)

Hydrogen

Reductive-<br/>PrecipitationCr(III)(aq) $Cr(OH)_3(S)$  $Cr_2FeO_4(S)$ Adsorption





Zero Valent Iron (ZVI) Column Study Treatment of Heavy Metals





**Zinc Concentrations vs Contact Time** 



# **Bench-Scale Testing**



## **Bench-Scale Testing**

#### **Remediation Amendments Tested**

- Molasses
- FerroBlack®
- Zero Valent Iron (ZVI)
- Trap & Treat® BOS 100®

#### Method

- 1 L containers
- Silica sand and remedial amendment
- Groundwater added
- Placed in dark, let sit, sampled over time





#### **Bench-Scale Testing - Results**





# **Pilot-Scale Testing**

































# **Full-Scale Remediation**

Using Zero Valent Iron (ZVI)



## Key Information Pertaining to Full-Scale

- The Client & Remedial Design
  - Client had very little cash
  - We could not tackle the entire plume at once
  - The work had to be staggered, to fit into the cash flow of the business
  - Use of Reactive Zones (RZs) and a Permeable Reactive Barrier (PRB)
    - PRB to stop continued migration downgradient (to residential properties)
- Full-Scale
  - Injection infrastructure installed first
  - Using this infrastructure additional groundwater sampling was completed
  - Then the PRB was installed
    - Method: Injection using a double packer system
    - Remedial Amendment: Zero Valent Iron slurry
    - Depth: into the plume in the bedrock between 4 m to 7 m bgs

























Injection Details:

- Placed ZVI using packers
- Industrial dual packer system
- Custom deployment system
- 4 discrete vertical injection intervals







- ZVI slurry used
- 50% by wt
  - This is very concentrated
- Injections at 400 psi to 1,200 psi

![](_page_43_Picture_5.jpeg)

### Groundwater Results – 14 months after Injection

Sampled: Oct 1, 2024

![](_page_44_Figure_2.jpeg)

## Take Aways

- Groundwater treatment of heavy metals in bedrock is possible
  - At full-scale: 99.99% in PRB
- ZVI is a feasible amendment for both source and plume areas
  - Pilot Areas performing after 4 years
- Other Take Aways
  - Use injection infrastructure for additional GW data collection
  - Thin fractures necessitated 50% by wt ZVI injection slurry
  - ZVI can be effectively injected into bedrock
    - With proper design and execution

![](_page_45_Picture_10.jpeg)

![](_page_46_Picture_0.jpeg)

# **Questions?**

# Thank You for Your Time

Bruce Tunnicliffe VEI Contracting Inc. (519) 249-9184 mobile brucet@vei.ca

www.vertexenvironmental.ca www.vei.ca

![](_page_46_Picture_5.jpeg)