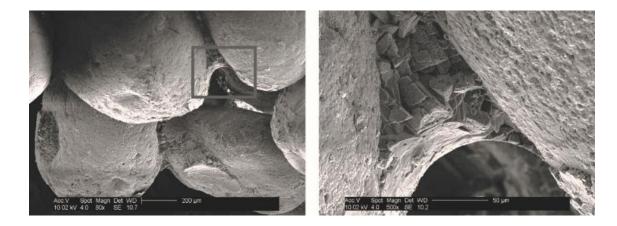
A Review of Microbially Induced Carbonate Precipitation in the Remediation of Diverse Mine Tailings

Geosyntec Consultants

Sarah Miles, Ph.D. and Sean O'Donnell, Ph.D.

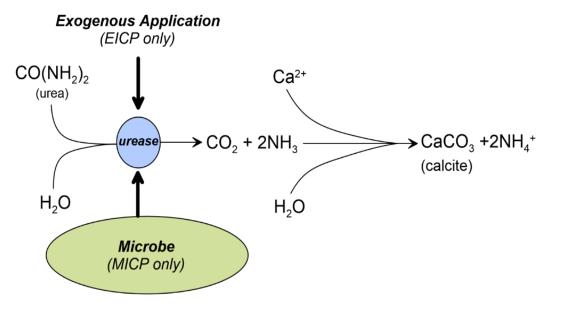
Goals and Agenda

- Goal: Discuss MICP as a remedial strategy for mine sites
- Agenda
 - What is MICP?
 - Microbial Processes
 - Applications of MICP in Mining
 - Challenges Associated with MICP
 - Case Studies
 - Summary and Conclusions


What is MICP?

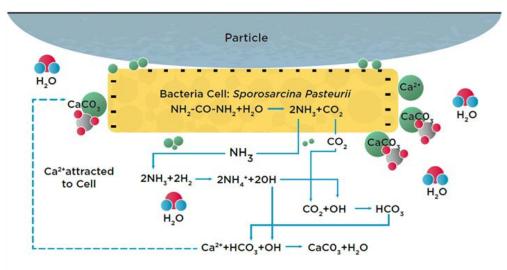
MICP – What is it?

- MICP is a bio-based process that induces precipitation of carbonate minerals by increasing pH and alkalinity
- Common microbial processes that induce MICP include
 - Ureolysis
 - Denitrification
 - Sulfate Reduction
 - Methanogenesis
 - Photosynthesis


Geosyntec[>]

consultants

- Ureolysis is catalyzed by the urease enzyme
- Urease is produced by several microbes and plants

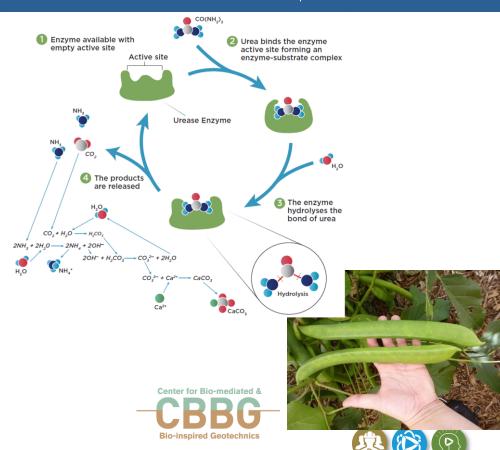


Ureolysis (MICP)

- MICP is catalyzed by ureolytic microbes (e.g., *Sporosarcina pasteurii*, *Lysinibacillus, Pararhodobacter*)
- These microbes produce urease and perform ureolysis
 - Scavenge nitrogen for incorporation into amino acids and proteins
 - Generate energy (ATP)
- Application requires stimulation of native microbes or augmentation with exogenous microbes
 - Stimulation may be more cost effective and easier to implement under existing regulations
 - Augmentation may be necessary if tailings are fairly sterile (i.e. limited native microbial ecology)

Net Urea Hydrolysis Reaction:

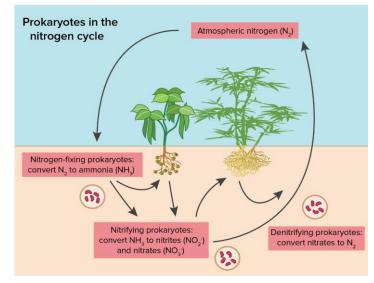
 NH_2 -CO- NH_2 +3 $H_2O \rightarrow 2NH_4$ +HCO₃+OH

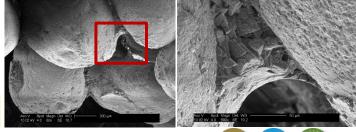

(OH) generated from NH₄⁺ producation>> (Ca²⁺)

Ureolysis (EICP)

Application requires an exogenous source of urease

- Urease is produced by plants in addition to microbes
 - Sword jack bean, watermelon seeds, soybeans
- Extraction of urease from plants is simple
 - Current research by CBBG (at ASU)
 - As much as 40x cheaper than purchasing laboratory-grade urease
 - Effective for carbonate precipitation and soil improvement


Geosyntec[>]


consultants

Denitrification (MIDP)

- MIDP is induced by microbial denitrification
- Denitrification is an anaerobic microbial metabolism in which nitrate is reduced to nitrogen gas
- Depending on geochemistry, denitrification can also increase pH and alkalinity
- MIDP improves soil properties in two ways:
 - Biogas generation = desaturation = permeability reduction and liquefaction mitigation.
 - pH and alkalinity increase = carbonate precipitation = interparticle cementation, improved strength, stiffness, dilatancy; reduced permeability

 $16NO_{3(aq)}^{-} + 10CH_{3}COO_{(aq)}^{-} + 13Ca_{(aq)}^{2+} \longrightarrow 8N_{2(g)} + 7CO_{2(aq)} + 15H_{2}O_{(l)} + 13CaCO_{3(s)} + 12CaCO_{3(s)} + 12$

Advantages and Disadvantages

• MICP

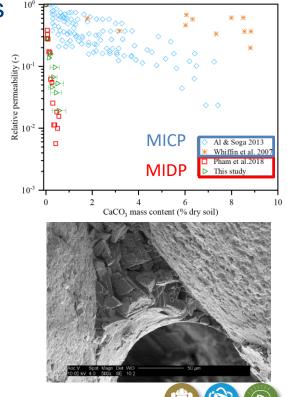
- Advantages: fast, aerobic microbes
- Disadvantages: byproduct generation (ammonium), harder to stimulate

• EICP

- Advantages: fast, no microbes
- Disadvantages: expensive (enzyme extraction), byproduct generation (ammonium)

• MIDP

- Advantages: desaturation and carbonate precipitation, microbes ubiquitous in subsurface, no major byproducts (nitrogen gas)
- Disadvantages: slow, anaerobic microbes


Applications of MICP in Mining

Geosyntec Consultants

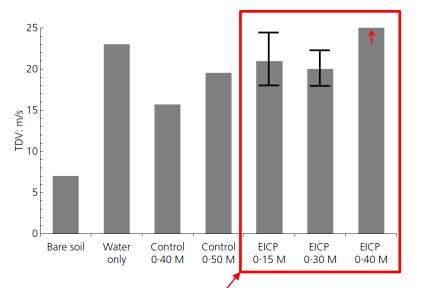
Permeability Reduction

- Application: prevent migration of contaminants
- Mechanisms for permeability reduction:
 - Void filling from carbonate precipitation and biomass growth (MICP, EICP, MIDP)
 - Desaturation from gas generation (MIDP only)
- Applicable technologies: MICP, EICP, MIDP
 - More efficient permeability reduction from MIDP compared with MICP or EICP
 - Combined effects of desaturation and void filling
 - Gas bubbles force carbonate precipitation at pore throats
- Implementation: subsurface injection of nutrients through injection wells

Geosyntec^D

consultants

Contaminant Binding



- Application: prevent migration of contaminants
- Mechanisms for contaminant binding:
 - Contaminants of concern are contained within crystal structure of precipitated carbonates
- Applicable technologies: MICP, EICP, MIDP
 - MICP and EICP may be more efficient b/c carbonate precipitation occurs faster
- Implementation: subsurface injection of nutrients through injection wells

Dust Control

- Application: prevent offsite migration of fugitive dust from TSFs
- Mechanism for dust control
 - Cementation of particles at the tailings surface
- Applicable technologies: MICP, EICP
 - MIDP generally not preferred (slower, anaerobic microbes)
- Implementation: surface application of nutrients/microbes

EICP treatment results in higher detachment velocity than water or salt treatments

Strength/Stability Improvement

- Application: prevent geotechnical failure of TSFs
- Mechanism for strength/stability improvement
 - Mass cementation/solidification of tailings particles (carbonate precipitation)
 - Particle roughening (carbonate precipitation)
- Applicable technologies: MICP, EICP, MIDP
 - MICP and EICP are generally much faster
 - MIDP is slower
- Implementation:
 - Subsurface injection of nutrients/microbes for in-place tailings
 - Injection of nutrients/microbes during placement of tailings

1.5

2

Mass Percentage Calcite (%)

2.5

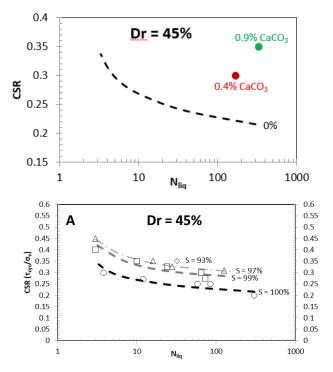
100

Ω

0.5

3.5

Continuous Flow


DeJong et al. 2014

3

<u>Geo</u>syntec[⊳]

Liquefaction Mitigation

- Application: Mitigate liquefaction risk for tailings
- Mechanisms for liquefaction mitigation:
 - Densification/cementation from carbonate precipitation (MICP, EICP, MIDP)
 - Desaturation from gas generation (MIDP only)
- Applicable technologies: MICP, EICP, MIDP
- Implementation: subsurface injection of nutrients through injection wells

Challenges Associated with MICP

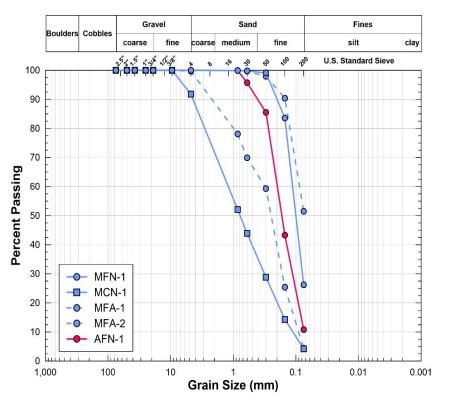
- Nutrient delivery how do we get the nutrients where we need them to go?
- Byproducts (ammonium)
- Reaction rate (MIDP can be slow)
- Microbial inhibition (nitrite)
- Inhibition of calcite precipitation (metals, organic acids)
- Immature technology (cost)

Geosyntec[▶]

Case Study 1: Dust Control

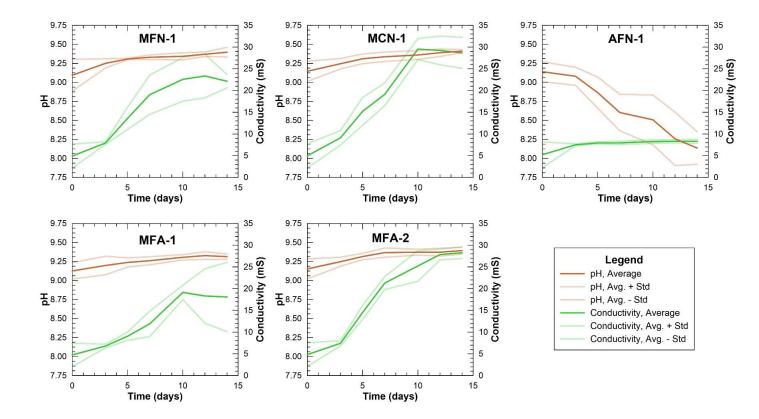
Geosyntec Consultants

Experimental Program

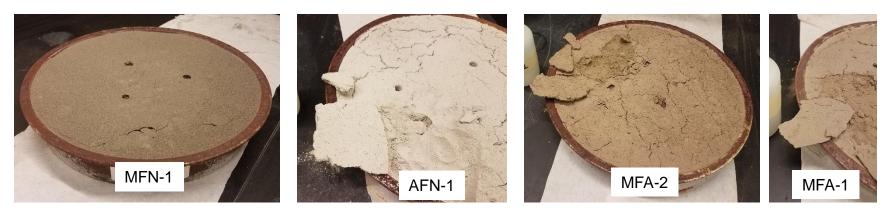


- Five samples of tailings obtained for the research program
 - Four are from taconite tailings facilities in Minnesota
 - One is from a copper-molybdenum ore site in Arizona
- Stimulation experiments (5) performed on each tailings sample
 - Test the feasibility of MICP at TSFs
- Wind tunnel testing of EICP-treated tailings
 - Compare with control tests
 - Test the feasibility of bio-based carbonate precipitation for dust control
- Freeze-Thaw Resistance of EICP-treated tailings
 - Determine the service life of EICP

Description of Tailings


- Five samples
 - MFN-1: fine, freshly deposited MN taconite tailings
 - MCN-1: coarse, freshly deposited MN taconite tailings
 - MFA-1: fine, aged MN taconite tailings (1-year old)
 - MFA-2: fine, aged MN taconite tailings (9-years old)
 - AFN-1: fine, fresh Arizona copper-molybdenum tailings

Stimulation Experiments



Wind Tunnel Testing

- EICP-treated tailings cured and dried prior to testing in wind tunnel
 - 5-minute exposure in wind tunnel (same as controls)
- Pocket penetrometer used to measure crust strength
- Crust thickness measured with calipers
- Carbonate content of crust measured using acid digestion

Results (EICP for Dust Control)

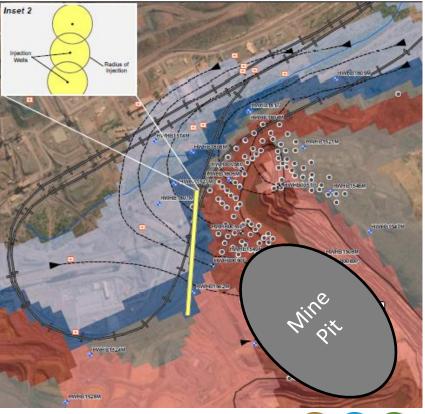
- Thin, but measurable crust formation on all tailings
- Small, but measurable crust strength on all tailings
- Between 1-12% carbonate in samples of cemented crust
- Reduction in mass loss by 3 orders of magnitude compared with untreated controls
- Significant freeze-thaw resistance
 - Negligible reduction in mass loss or crust strength after three freezethaw cycles

Geosyntec^D

Next Steps

• Field trials

- Five ¼ acre test plots at Minnesota TSF
 - Two control plots (untreated and treated with tack and straw)
 - Three test plots (EICP)
- Treatment by truck (water trucks with spreader bars)
- Mechanical dust generation and monitoring
 - Video monitoring
 - PI-SWERL

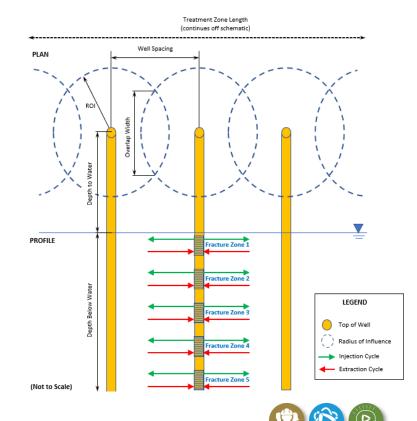

Case Study 2: Containment Barrier

Geosyntec Consultants

Project Overview

- Goal: reduce PFAS mass flux into mine pit to aid dewatering
- Solution: construct MIDP cutoff wall to restrict flow through high permeability pathways (fractured rock)

Selected Remedy (MIDP)



• Implementation

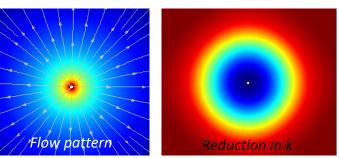
- Assume stimulation of denitrifiers (to be assessed via treatability studies)
- Void filling and stimulation occur simultaneously
- Advantages
 - Efficient void clogging (interplay between gas, carbonate, and biomass)
 - No by-products

Disadvantages

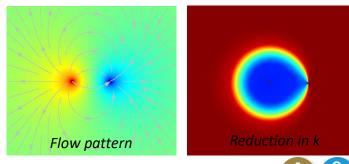
- Long reaction times (potential to shorten)
- Potential for gas migration
- Fracture size and shape may affect performance

Remedy Design

- Model implemented in COMSOL Multiphysics
 - Groundwater flow based on Darcy's Law
 - Reactive transport (advection and diffusion)
- Two geometries were considered
 - 2D plane strain (top view) comparison of single injection versus injection-extraction system
 - 2D axisymmetric geometries single well injection

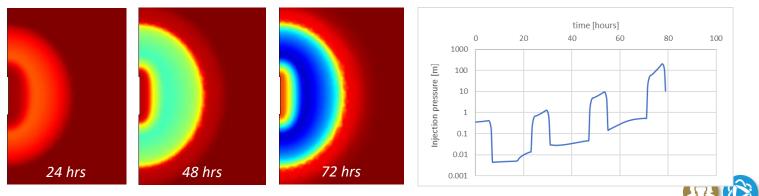


Remedy Design



• 2D Plane strain simulations

- Single injection (left) and injection extraction (right) show no major differences in shape and extent of treatment zone or clogging efficiency
- Treatment zone affected by porosity distribution, controlled by flow rate, flow strategy (continuous or pulsed), and substrate concentrations


SINGLE INJECTION

INJECTION-EXTRACTION

Remedy Design

- 2D axisymmetric simulations:
 - Assumes homogeneous, isotropic initial porosity and permeability of fractured rock mass
 - Four MIDP treatment cycles: 6 hours injection (50 l/min) + 18 hours reaction (with water injected at 1/100 flow rate during reaction)
 - Results: spherical 14-m diameter treatment zone with reduction in hydraulic conductivity > two orders of magnitude.

Summary and Conclusions

Geosyntec consultants

Summary and Conclusions

- MICP shows promise as a remedial strategy for mine sites
- Three major mechanisms for MICP were considered:
 - MICP (Ureolysis)
 - EICP (Ureolysis)
 - MIDP (Denitrification)
- Variety of applications
 - Contaminant binding
 - Permeability reduction
 - Dust control
 - Strength/stability
 - Liquefaction mitigation
- Case Studies

Questions?

Geosyntec Consultants

