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Who is EMS?

R&D

$10M of Sponsored Research by 

Siciliano Group into In Situ 

Remediation Technologies 

2000 2019 2022 2023

COMPANY FOUNDING

Early Adopters

FCL, Suncor, Transgas

FUNDING

$1.6M Raised from 

Family Offices, Angels, 

and Syndicates

2024

EXPANSION & SCALING

US, EU, and Australian Sales

RELEASE OF SOFTWARE-

ENABLED HARDWARE 

PlumeFutures
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What if we created the world’s largest 

water/soil contaminant database?

GEO AIHARDWARE

Soil Sensors, Vector Network 

Analysis, Ionophoric 

Sensors, Near Infrared

DATA & ANALYTICS

Robust database with 61 

million data records 

powering our analytics

Unlock game-changing 

insights by expanding to 

1.14 billion data records by 

2027
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Predictive modeling of NSZD

Deep learning (neural networks)

Automated anomaly detection

Unsupervised learning

Site-specific biostim 

optimization & management actions

Random forests / CNNs

Site portfolio prioritization

Reinforcement learning

Apply insights from monitored 

to unmonitored sites

Transfer learning

Adaptive management

Stochastic modelling & data assimilation

Real-time decision support

GEO AI
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Line or battery powered. Multi-year battery life. Solar panel add-on 

for recharging batteries.

WaterSense Operation

Gas permeable membrane keeps the sensor water-proof, while 

allowing gases to diffuse to the NDIR sensor.

Measures CO2, CH4, & PHC vapours – calculate dissolved 

concentrations. Measures temperature & pressure directly.

Flexible sample times from minutes to days. Typically, every 30 –

60 minutes.

Automated data communication and storage. Reduced site trips. 

Viewable trends on-line.
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Client Reports and 

Dashboards

Data Flow

EMS Sensors Network gateway
Decryption and 

Decoding Database

MODFLOW and EMS 

PlumeFutures

Data Visualization over 

time

PEST++ and EMS Data Assimilation 

into PlumeFutures

Model New Data

Updated 
Model _________________________________________

Executive Summary

A WaterSense network was installed at 14 locations
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PEST++ and EMS Data 

Assimilation into PlumeFutures

Model New Data

Updated 
Model
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Cinderella Syndrome



EMS Environmental Material Science

8

Non-Uniqueness
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Non-Uniqueness
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Non-Uniqueness
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Machine Learning

𝑦 =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
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Machine Learning

𝑦 =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
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Data Assimilation
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What is the value of PlumeFutures and continuous 
data?

Updated Views of Contamination Risk

New Data

Updated Model via 
Data Assimilation

Model

Continuously updated 
with new sensor data
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Data Assimilation



Kalman Filter

The optimal* way to combine noisy estimates to produce a 

better and less noisy estimate

Seemingly endless list of applications:

• Target tracking (e.g. missiles, kamikaze drones)

• Unmanned vehicles and robots (e.g. self-driving cars, 

drones, submarines etc.)

• Numerical Weather Prediction

• GPS devices (e.g. google maps)

• Signal Processing

• Econometrics

• Apollo program

• NASA Space Shuttle

• Navy submarines



Kalman Filter

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑣 + 𝐾𝑟 𝑟 = ℎ − 𝑍𝑥

“Kalman gain”

𝑥𝑛𝑒𝑤

𝑥𝑝𝑟𝑒𝑣 ℎ

𝐾 =
𝜎𝑧
2

𝜎𝑧
2 + 𝜎ℎ

2

Size of update determined by the relative difference between 

the model uncertainty (𝜎𝑧
2) and the measurement uncertainty 

(𝜎ℎ
2).

If the model uncertainty is lower 𝜎𝑧
2 < 𝜎ℎ

2 then we have a 

smaller update.

If the model uncertainty is higher 𝜎𝑧
2 > 𝜎ℎ

2 then we have a 

larger update.

measurement model



𝑥𝑛𝑒𝑤

𝑥𝑝𝑟𝑒𝑣 ℎ

Kalman Filter

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑣 + 𝐾𝑟

𝐾 = 𝐶(𝑥)𝑍𝑇 𝑍𝐶 𝑥 𝑍𝑇 + 𝐶(𝜀) −1

𝑟 = ℎ − 𝑍𝑥

“Kalman gain”

𝐾 =
𝐶(𝑥)𝑍𝑇

𝑍𝐶 𝑥 𝑍𝑇 + 𝐶(𝜀)
𝐾 =

𝜎𝑧
2

𝜎𝑧
2 + 𝜎ℎ

2



Ensemble Kalman Filter

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑣 + 𝐾𝑟

𝐾 = 𝐶(𝑥)𝑍𝑇 𝑍𝐶 𝑥 𝑍𝑇 + 𝐶(𝜀) −1

Approximated with the statistics of the 
ensembles

𝑟 = ℎ − 𝑍(𝑥)



Ensemble Kalman Filter

𝐾 = 𝐶(𝑥)𝑍𝑇 𝑍𝐶 𝑥 𝑍𝑇 + 𝐶(𝜀) −1

𝑟 = ℎ − 𝑍(𝑥)

𝑍𝐶(𝑥)𝑍𝑇 ≈
1

𝑁−1
(𝑜 − ҧ𝑜)(𝑜 − ҧ𝑜)𝑇𝐶(𝑥)𝑍𝑇 ≈

1

𝑁−1
𝑥 − ҧ𝑥 (𝑜 − ҧ𝑜)𝑇

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑣 + 𝐶(𝑥, 𝑜) 𝐶 𝑜 + 𝐶(𝜀) −1𝑟

𝑥𝑛𝑒𝑤 = 𝑥𝑝𝑟𝑒𝑣 + 𝐾𝑟

𝑟 = ℎ − 𝑜



Iterative Ensemble Smoother

∆𝑥𝑖= −((𝐽𝑒
𝑇𝐶 𝜀 −1𝐽𝑒) + (1 + 𝜆)𝐶 𝑥 −1)−1 𝐶 𝜀 −1(𝑥𝑖−𝑥𝑖−1 + 𝐽𝑒

𝑇𝑟)

𝑟 = ℎ − 𝑍(𝑥)

∆𝑠𝑖𝑚≈
1

𝑁−1
(𝑜 − ҧ𝑜)(𝑜 − ҧ𝑜)𝑇∆𝑝𝑎𝑟≈

1

𝑁−1
𝑥 − ҧ𝑥 (𝑜 − ҧ𝑜)𝑇

𝑥1 = 𝑥𝑝𝑟𝑒𝑣 + ∆𝑥1
𝑟 = ℎ − 𝑜𝑥2 = 𝑥1 + ∆𝑥2

𝑥𝑛𝑒𝑤 = 𝑥𝑖 + ∆𝑥𝑖
…

𝐽𝑒 = 𝐶 𝜀
1
2
∆𝑠𝑖𝑚
∆𝑝𝑎𝑟

𝐶 𝜀 −
1
2
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Data Assimilation 
Resources



PlumeFutures

Machine learning AI has enabled:

• Model prep time reduced from weeks to 1-3 hours.

• Model updating fully automated.

• Model predictions targeted at what clients care about (risk and liability), not 
what nerds modelers care about (parameters).

• Revolutionizing scale: from manual modeling of select sites to analyzing 
thousands of locations, processing millions of data points.

White, 2017. Forecast First: An Argument for Groundwater Modeling in Reverse. Groundwater 55(5): 660-664.



Case Study: Deliberate Delineation

Contours of the groundwater Benzene threshold from 200 models 

that equally fit the available data.

Identified potential plume 

instability.

AI informed borehole locations to 

delineate risk.



Site insights for a
better world.

Nico Higgs
nicohiggs@ems-inc.ca

Steven Mamet
stevemamet@ems-inc.ca

Steven Siciliano
stevesiciliano@ems-inc.ca

www.ems-inc.ca

mailto:nicohiggs@ems-inc.ca
mailto:nicohiggs@ems-inc.ca
mailto:nicohiggs@ems-inc.ca
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Continuously Monitor and Update Decision Critical 
Predictions

Assimilate
New Sensor Data

Updated 

Model

Consultant

Reports

Improve
Decision
Confidence

Risk/Liability continuously updated: 

✓ Plume Stability

✓ Natural depletion (NSZD)

✓ Is applied remediation effective?

NewD
ata

Updated Model

Model 
Forecast

Initial 

Model

Why Autonomous Sensors?
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Why EMS?

Traditional Annual Sampling
EMS Autonomous Sensor Direct 

Measurement

# Monitoring Wells 6 6

Sample Frequency
Twice a year or Annually (depending 

on Regulations)
Every 30 minutes

Field Work
Pull sample, send to lab,

wait for report

None after sensor install into existing monitoring

wells/easy removal

Analysis

Single point in time sample

10 mL of 250 mL / 1L water

One report

Continuously updated, online visual trends

predict risks, fast decisions, assess more sites

Data Points per well 

each sampling event 

(e.g., annual)

1-2 17,520

Time to Risk 

Understanding
~ 3 Years ~ 3 to 6 months

Cost $30,000 - $60,000 $14,500 or $29,000 / year

Cost/data point $5,000.00 - $10,000.00 each $0.80 - $1.60 each

Increased Data at Reduced Cost
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Baseline NSZD Biostim

0 20 40 60 80 100

Biostim

NSZD

Baseline

Total Mass (kg) in Groundwater

Why PlumeFutures?
Scenario Planning
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Scenario Planning

Why PlumeFutures?
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Site Triage

Why PlumeFutures?

These sites are depleting more 

than expected!

These sites are depleting slowly –

should we adapt our remediation 

strategy?
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But can WaterSense really estimate 
GW PHC concentrations?
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Specifications

Component Range Resolution Accuracy 

(+/-)

Precision Drift (yr-1)

O2 (%)1 0 – 25 0.01 0.6 0.3 <5

CO2 (%) 0 – 10 0.002 0.002 0.03 0.05

CH4 (%) 0 – 50 0.0004 0.006 0.17 0.05

PHC (%) 0 – 2.1 0.001 0.003 0.0007 0.025

Temperature (°C)2 -40 – 85 0.01 1.0 0.1 0.02

RH (%)2 0 – 100 0.008 3.0 0.02 0.5

Pressure (mb)2 300 – 1,100 0.0018 1.0 0.013 1.0

1SGX Industrial Oxygen Sensor (SGX-4Ox-EL)
2BOSCH Combined Temperature, Humidity, and Pressure Sensor (BME280)

Sensor performance is reported according to the following definitions:

• Range – Reported in absolute units as the minimum and maximum values of the range

the sensor detects.

• Accuracy* – Reported in absolute units as the Root Mean Squared Error (RMSE).

• Precision* – Reported in absolute units as the standard deviation.

• Resolution – Reported in absolute units as the smallest detectable change.

• Drift – Reported as the difference between RMSE at 1 year after calibration and RMSE at

calibration. 

https://www.sgxsensortech.com/content/uploads/2020/04/DS-0318-SGX-4OX-EL-datasheet.pdf
https://www.mouser.com/datasheet/2/783/BST-BME280-DS002-1509607.pdf
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PlumeFutures

MODFLOW is a widely used groundwater modeling software developed by the United States Geological Survey (USGS). Here’s what it does:

1. Groundwater Flow Simulation: MODFLOW simulates the flow of groundwater through aquifers. It can model how water moves underground, which is 

essential for understanding and managing water resources.

2. Grid-Based Model: The area being studied is divided into a grid of cells. Each cell represents a specific volume of the aquifer. The model calculates the water 

flow between these cells over time.

3. Input Parameters: Users provide various inputs like hydraulic conductivity, recharge rates (HYDRUS), pumping rates, and boundary conditions. These 

parameters define how water moves through the aquifer.

4. Applications: MODFLOW is used for water supply planning, contamination assessment, and managing groundwater resources. It helps in predicting how 

groundwater levels change in response to natural and human activities.

PEST++ is an advanced version of the PEST (Parameter ESTimation) software, which is used for model calibration and uncertainty analysis. Here’s what it does:

1. Model Calibration: PEST++ adjusts the input parameters of a model (like MODFLOW) to match observed data (e.g., water levels, flow rates). This process 

ensures that the model accurately represents the real-world system.

2. Optimization: PEST++ uses optimization algorithms to find the best set of parameters that minimize the difference between observed data and model 

predictions.

3. Uncertainty Analysis: It also quantifies the uncertainty in model predictions. This means it helps in understanding how certain or uncertain the model outputs 

are, given the possible variations in input parameters.

4. Automation and Efficiency: PEST++ is designed to be more efficient and capable of handling large and complex models compared to the original PEST. It can

automate many of the calibration tasks, making it faster and more reliable.

How They Work Together

When used together, MODFLOW and PEST++ provide a powerful toolkit for groundwater modeling:

•MODFLOW creates a detailed simulation of groundwater flow.

•PEST++ calibrates the MODFLOW model to ensure it accurately reflects observed data and assesses the uncertainty in the model predictions.

This combination is essential for making informed decisions about groundwater management and ensuring that models are reliable and useful for planning and 

analysis.
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PlumeFutures

Workflow Example

1. Initial Setup: Develop HYDRUS and MODFLOW models for your study area. Define the soil properties, boundary conditions, and initial conditions for HYDRUS. 

Define the aquifer properties and boundary conditions for MODFLOW.

2. HYDRUS Simulation: Run HYDRUS to simulate soil moisture dynamics and calculate recharge rates based on precipitation, evapotranspiration, and soil 

properties.

3. MODFLOW Simulation: Use the recharge rates from HYDRUS as input for MODFLOW. Run MODFLOW to simulate groundwater flow and levels.

4. Calibration with PEST++: Use observed data (e.g., soil moisture content, groundwater levels) to calibrate both models. PEST++ will adjust the parameters in 

HYDRUS and MODFLOW to minimize the differences between observed and simulated values.

5. Iterate and Refine: Iterate the process, running HYDRUS and MODFLOW simulations, and recalibrating with PEST++ until the models are well-calibrated and 

accurately reflect the observed data.

6. Uncertainty Analysis: Use PEST++ to perform uncertainty analysis, providing insights into the reliability of the model predictions.

By integrating HYDRUS with MODFLOW and using PEST++ for calibration, you can create a robust and accurate modeling framework that covers the entire 

hydrological cycle from the unsaturated zone to the groundwater system. This integrated approach is valuable for various applications, including water resource 

management, agricultural planning, and contaminant transport studies.



EMS Environmental Material Science

61

The Challenge of Point-in-time 
Sampling to Assess Risks

Traditional: various 

samples at a site
48 measurements show 

sample variability over 1 

day

60

40

20

0

NSZD

(g m-2 day-1)

17,520 measurements 

show variability over 1 

year!
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The Challenge of Point-in-time 
Sampling to Assess Risks

Seasonal variability but…

your plume is shrinking!

• Typically, 5-10 sensors/site

• 30 min resolution.

Plume area through time

Trend line



NDIR



Beer-Lambert



CH4 and PHC Interference



CH4 and PHC Interference



Water Sense

Henry’s Law:

The amount of dissolved gas in a liquid is proportional to its partial pressure above the 

liquid.

Raoult’s Law:

The partial pressure of each component of an ideal mixture of liquids is equal to the vapour

pressure of the pure component multiplied by its mole fraction in the mixture.



Water Sense

𝐶𝑎 = 𝐶𝑔𝑃𝐾𝐻
0𝑒𝑥𝑝 𝛿

1

𝑇
−

1

𝑇0
𝑀𝐵𝜌𝑤

𝐶𝑎 = Aqueous concentration

𝐶𝑔 = Gaseous concentration

𝑃 = Pressure

𝐾𝐻
0 = Henry’s constant for solubility in water

𝛿 = Temperature dependence constant

𝑇 = Measured temperature

𝑇0 = Standard temperature

𝑀𝐵 = Benzene molar mass

𝜌𝑤 = Water density



Water Sense

𝐶𝑎 = 𝐶𝑔𝑃𝐾𝐻
0𝑒𝑥𝑝 𝛿

1

𝑇
−

1

𝑇0
𝑀𝐵𝜌𝑤

𝐶𝑎 = Aqueous concentration 𝐶𝑔 = Gaseous concentration

𝑃 = Pressure

𝐾𝐻
0 = Henry’s constant for solubility in water

𝛿 = Temperature dependence constant

𝑇 = Measured temperature 𝑇0 = Standard temperature

𝑀𝐵 = Benzene molar mass

𝜌𝑤 = Water density

What we want What we measure Constants


