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The End of Poke and Hope?
I. The Problem with Poke and Hope

II. Best Management Practices (Electrical Hydrogeology Process)
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I. Problem with Poke & Hope

Monitoring Well Misconceptions

= “Monitoring Wells” = “"Characterization Wells"”

= Early Site Assumptions: e - W o
- Single source, single pathways s e
I 1 I Nl l

- Homogeneous geology/hydrogeology 1 e -

= Monitoring Well Assumptions:

« Install without QA/QC or development
* No routine maintenance needed

« Samples representative of subsurface

Original HRSC!

3D contaminant migration
Cape Cod (LeBlanc et al. 1991)
Borden (Sudicky et al. 1983)



“(seismic) reflections were not even

Scan then Ta rget ApproaCh: considered on a par with the divining
Aligning with Other Industries rod, for at least that device had a

background of tradition”
E. E. Rosaire

Other industries requiring data “below the surface” evolve to scan first then go invasive

X-ray of Skull 3-D Seismic North Sea

nydailynews.com dgi.com



1. Problem with Poke & Hope

~ Traditional ERI vs GeoTrax Survey™

Standard ERI Methods Aestus/OSU ERI Methods
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Confirmed by EPA Ada Lab

Drillable Image
Halihan et al, 2005



I. Problem with Poke & Hope

NAPL is Distributed as Blobs

= Sufficient data density to see NAPL distribution

= "Drillable” datasets
(discrete targets for drilling)

IPost-remediation evaluation of a LNAPL site using electrical
resistivity imaging
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Impacted Borings (>10 ppm soil TPH)

Cleaner Borings

.I
(6]
1
T

TPH = 21,1283 mg/ kq

25

30

35
Distance (m)

40

. 500

=375
{250
1150

= w o N =
o S O o g

o

(w-wiyo) AjiAnsisay




1. Problem wit Poke & Hope

low Paths Are Discrete
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I. Problem with Poke & Hope

Radius of Influence Is Not Uniform

Marit6fing&Remediation

Permanganate
concentrated to side Electrical Resistivity Imaging

Injection ROI hard to predict,
of a Permanganate Injection During In Situ

but Ca n be i maged of injECtiOn plane and | Treatment of RDX-Contaminated Groundwater
/ m ig ra ted u pwa rd S by Todd Halihan, Jeffrey Albano, Steve D. Comfort, and Vitaly A. Zlotnik
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Temporal ERI (TERI) image showing changes in subsurface over time



I. Problem with Poke & Hope

Monitoring Wells # Characterization Wells

What an image can see that a monitoring well cannot:

v'NAPL is distributed in blobs
v High concentrations/source zones on old | Q

O

or previously remediated sites
v" Discrete contaminant flow paths
v" Injections are not uniformly distributed
v Microbial growth structures




I1. Best Management Practices

Best Management Practices
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II. Best Management Practices

Data Integration & Geospatial
QETF

= Integrate all available data

 Historical Records/Aerial, DEM,
Regional Geology

- Chemical Info and Previous Site #
Work/Remediation

= Multiple lines of evidence
= Robust data base \ &
= (Geospatial control is critical

Co

ntrol

s




3D Visualization

= Robust modeling capabilities
 Geologic contacts

 Contaminant extents

= Understand how multiple lines of
evidence relate

= See data gaps to inform next steps

= Reqgulator, RP, & stakeholder buy-in

I1. Best Management Practices

Mapped top of
competent

Top Well/boring
f construction & signs of
; contamination

Zones of elevated PIDs/signs
of contamination concentrated
in bedrock lows



I1. Best Management Practices

QA/QC

Critical at every step!
= QAPPs
= Data collection/ awe | |leogs [ AN

Electric line
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I1. Best Management Practices

Collaboration/Focused Next Steps

Collaborative Team Seeking Data-Driven Solutions

Responsible
Parties
~ h

?{  Expect Surpri
F Contractors ? k Xpec Ul‘prlses/

Iterative Ops
Consultants/
Technical
) Professionals

ﬁ' Agree on Next Steps

Regulators




I. Problem with Poke & Hope I1. Best Management Practices ITI. A New Hope: Scan First

se Proven Process
Electrical Hydrogeology (Scan First) Workflow

Visualize Ultra-High Interim
Existing Site Resolution Report
Data in 3D Electrical Scan (w/Hypotheses)

- Client sends - Field Acquisition: - Integrate/QC data
existing site data GeoTrax Survey™ sets in 2D&3D
to Aestus 2D Imagery (GeoTrax Viz™)
- Must occur prior - Use dynamic - Select
to field work work strategy confirmation
(Step 2) with QA/QC drilling (biopsy)

locations with
client




200 ft /60 m

III. A New Hope: Scan First

Scanning Increases Characterization Certainty

Grid of Monitoring Wells

2

4

J

| —

200 ft / 60 m

Most sites aren’t this simple!

Number of Wells/Surveys 25 10 Grid of Scans (GeoTrax Surveys™)
Impacted Zones Detected 1 8
Impact Extents
Understood? e =
3D Model Included? No Yes

Targeted Areas for
Additional Investigation?

Total Approx. Cost  $114k $200k
Approx. Cost / ft2 $230 $20

No Yes

200 ft / 60 m

Sampling interval of 50 ft/15 m for both MWs & ERI Scans
Values calculated assuming 30 ft drilling depth, 2” PVC
Costs in USD 200 ft / 60 m

Scanning first is more cost effective and
provides clear next steps



ITI. A New Hope: Scan First

Characterization & RDC Saves Time and Costs

= Investing in remedial design

characterization (RDC) will u(:;t"éﬁ&‘; g‘hsgaést(gﬁzzzic;r)l Remediation

save significant time and —4

money on an overall project 1 ey

basis //""’ Savings
= Electrical hydrogeology (scan © Tl ShonarTimatan

first) process — more |~

certainty in next steps -

Time

Every $ spent on characterization
can save $$% on remediation




Following the Process:

III. A New Hope: Scan First

Time and Cost Savings Realized

Site Closure in Less Than 2 Years

TIME: LNAPL in Karst (OK)
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COST: CVOCs in Glacial Till (WA)
~$3.7M Saved on Remediation




Cost vs Benefit?

Can we afford to scan prior to
remediation?



Cost vs Benefit?

Can—weaffordto-scanpriorte



Best Practices for Modern Characterization

§ | -
e o .0 - ks
. § -
. o
s o S &\oh
. « ~
£ > %
o,
¥ <
\
; \
)
N, 2 .
v

= Monitoring Wells # Characterization Wells

= Successful site characterization requires integrated
process:
QA/QC & safety protocols
Integrated geospatial database
Scan (or other HRSC) prior to remediation
3D visualization
Iterative & collaborative evaluation

= Electrical hydrogeology yields time and cost savings for <
remediation with minimized trailing liabilities l\ N
N )
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QUESTIONS?

Thank you for your time!

Samantha Frandsen

Stuart McDonald

Kyle Spears

smf@aestuslic.com

swm@aestusllc.com

kws@aestusllc.com

www.aestusllc.com
1.888.GEO.TRAX



APPENDIX SLIDES FOLLOW



GeoTrax Survey™ Field
Deployment

= 56 evenly spaced electrodes
= Must be in a straight line

= Line length = 5 x imaging
depth




Signal Strength

What Does Aestus See?

Biological activity

Contamination/ Injectates/etc.

Groundwater/Fluids

Soil and rocks

Each data point (pixel) equals the sum of:
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Aqueous Phase
Contamination

Signal
Strength

Clay, Silt, Sand Rock

A e ') =
i N JLA o ) R’\
Bioactivity/ Water * Solid

Less Electrically Resistive ictivi More Electrically Resistive
(More Electrically Conductive) RESIStI\IIt\[ (Less Electrically Conductive)



