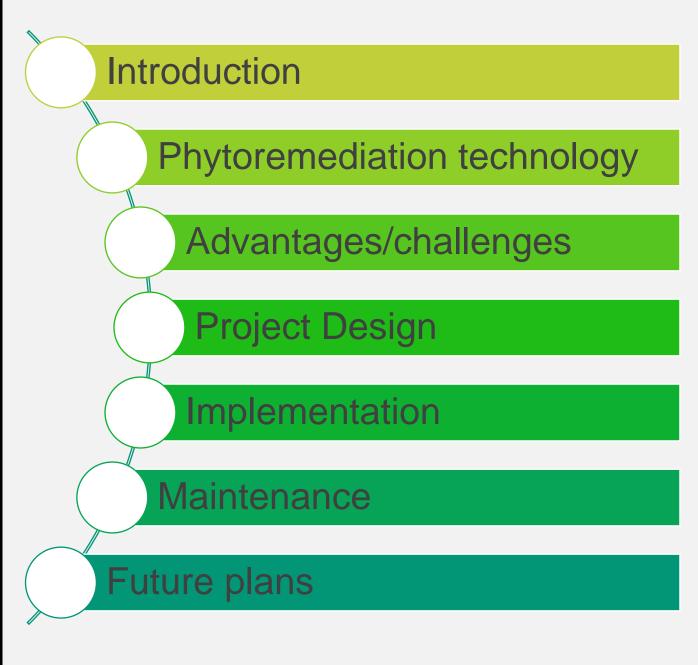


→ Faezeh Eslamian, P. Eng., Ph.D. Project Manger, GHD Consultants


PHYTOREMEDIATION:

A Green and Sustainable Technology for the Remediation of Urban Brownfields Contaminated with Organic Compounds

Presentation → Outline

Introduction Urban brownfields

Urban Brownfields are abandoned and vacant industrial and commercial lands within the cities:

- Contaminated (real or perceived)
- Costly remediation
- Complex redevelopment
- Nuisance to humans and ecology

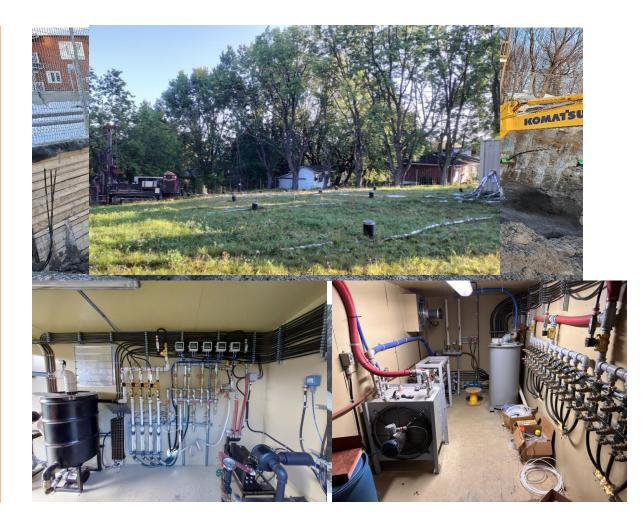
USA: 500,000 brownfield Sites

Canada: **30,000** brownfield Sites

Europe: difficult to quantify

Sources: Ahmad et Al. (2018); Cappai et Al. (2019)

Regeneration of these brownfields has great potential including social, environmental, biodiversity and economic benefits



Remediation technologies:

- ❖ In-situ vs Ex-situ
- Vadose vs saturated zone

Conventional remediation technologies:

- ☐ Excavation and off-site disposal
- ☐ In-situ technologies such as:
 - In-situ chemical oxidization
 - Air sparging/soil vapor extraction
 - In situ thermal treatment
 - Enhanced aerobic remediation

Disadvantages of conventional Remediation technologies:

- Potential of spills
- > Site inaccessible and aesthetically unpleasant
- > High cost of implementation and maintenance

High environmental footprint

Use of chemical reagent

Consumption of fuel-based energy supply

Natural-based remediation: Phytoremediation

Phytoremediation is a green and sustainable technology that uses plants and their associated microorganisms to decontaminate soil and ground water.

Phytoremediation Mechanisms

Pollutants uptake and breakdown of complex organic compounds into less complex/toxic compounds in plant tissues (or rhizophere) using plant enzymes

Phytodegradation

Breakdown of pollutants in the soil by microbial activity (bacteria or fungi) in the vicinity of plant roots

Rhizodegradation

Phytovolatilization

Pollutants uptake, transformation in volatile compounds and the transpiration into atmosphere as a gas

Phytoextraction

Pollutants adsorption and uptake by the roots and accumulation in harvestable areal biomass

Phytostabilization

pollutants

Immobilization and reduction of pollutant stability in the rhizophere

page 8 I © 2024 GHD. All rights reserved.

source: Guidi Nissim & Labrecque, 2021; OVAM, 2019 Phytoremediation - Code of Good Practice

Phytoremediation Advantages:

Biodiversity

Soil protection

Air Quality

Sustainability

Land Value

Social benefits

Human Health

Costeffective

Climate Change mitigation

Phytoremediation Challenges:

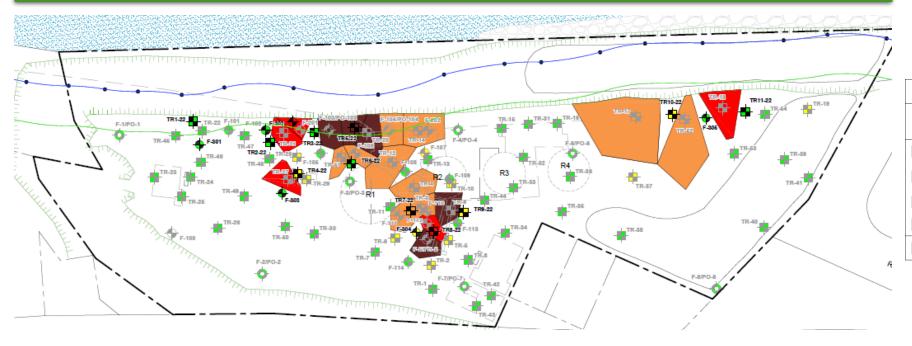
Slow Pace (couples of years to multiple decennia)

Ecological Trap – Attractive Nuisance

End of Remediation Plan

→ Site Description

Project Site: Urban brownfield (former bulk plant) in Quebec



- Site area: 30,000 m²
- GWL: 3.7-4.2 mBGS
- Soil: sandy up to 4 m
- Soil Contamination:
 - PH (C₁₀-C₅₀)
 - PAH
 - MAH
 - Mn
- Contamination depth: 3.5 m
- Estimated contamination volume: 13,000 m3 (including B-C soils)

Phytoremediation project Site Description

Site plan – soil contamination polygons

CLASSIFICATION ENVIRONNEMENTALE DES SOLS					
ZONES	Critères génériques du "Guide d'intervention - protection des sols et réhabilitation des terrains contaminés" du MELCCFP	Valeurs limites des Annexes I et II du "Règlement sur la protection et la réhabilitation des terrains" du MELCCFP			
	≤A	<vl-ai< td=""></vl-ai<>			
	A - B	≤VL-AI			
	B - C	>VL-AI / ≤VL-AII			
	> C	>VL-AII			
	> C (≥RESC)	>VL-AII			

Main Soil contaminants	Max Conc. Max (mg/kg)	Avg. Conc. (mg/kg)	C Criteria of MELCCFP
HP C ₁₀ -C ₅₀	16 100	804.6	3 500
1,3-Diméthylnaphtalène	75.2	1.29	10
Xylènes	101	0.83	50
Mn	6 600	829.2	2 200

Main GW contaminants	Max Conc. Max (μg/l)	Avg. Conc. (μg/l)	Seepage Critera
HP C10-C50	3 630	804.6	2 800
Mn	6 600	829.2	3 591 ¹
WIN	6 600	829.2	3 591 '

Note 1: based on hardness of 84.5 mg/

I © 2024 GHD. All rights reserved.

→ Remediation Plan - Design

Phytoremediation was selected as the appropriate option for site remediation based on :

- Site location, surface area and conditions
- Sustainability, cost-effective and social benefits
- Type, concentration and depth of the contaminants
- Phytoremediation treatability study

- ✓ HP C10-C50, HAP, COV, metals
- ✓ TOC
- ✓ pH and Redox
- P, N, available nutrients (Melich-III)
- Mircotoxicity, Heterotrophic Plate Count (BHAA), Hydrocarbonoclastes Plate Count
- ✓ Column adsorption/desorption test

→ Remediation Plan - Design

Phytoremediation plants

Willows (Salix genus)

(shrubs - main species for the treatment of organic compounds root system1-3m deep indigene)

Poplars (*Populus* gen.)

(trees - treatment of organic compounds root system can go deeper - indigene)

Sunflower (Helianthus gen.)

(annual planttreatment of metals -Mn)

→ Remediation Plan - Design

Phytoremediation landscaping design plan

Estimated Project duration:7 to 9 years

Phytoremediation project Remediation Plan - Design

Phytoremediation project | High Phytoremediation | Phytoremediation |

- Implantation of the polygons and delineation of the planation zones
- Soil preparation removal of any debris or sods

Phytoremediation project > Implementation

- Spreading of organic soil and compost on the top layer
- Spreading mulch

- Plant location marking using a plywood template 5)
- Installing wood stakes supports

Phytoremediation project > Implementation

Implementation sequence

Plantation of willows and poplars with protective barriers

I © 2024 GHD. All rights reserved.

Phytoremediation project | High Phytoremediation | Phytoremediation |

Implementation sequence

Plantation of sunflower seeds in the eastern section

About 6 weeks after seeding

About 3 months after seeding

- Installation of permanent fencing
- 10) Plantation of rose shrubs

Phytoremediation project > Implementation

I © 2024 GHD. All rights reserved.

Phytoremediation project Maintenance

Site Maintenance and follow-up

- Irrigation especially the first season and only if dry
- Weeding and pruning
- Removing the wilted roses after the first year
- Cleaning the soils around the plants every spring to removed dead materials
- Protecting the young plants from rodents
- Detection of phytosanitary symptoms
- If the plant are damaged by climate conditions, extreme weather or plant disease, they will be replaced by new plants or more resistant species
- In case specific issues are encountered, supplementary analysis for problem diagnosis will be carried out
- Annual GW and biomass sampling

Phytoremediation project > Implementation examples

→ Future plans

Future potential – Landscaping design - transformation to a park

Thank you for your attention

October 2024