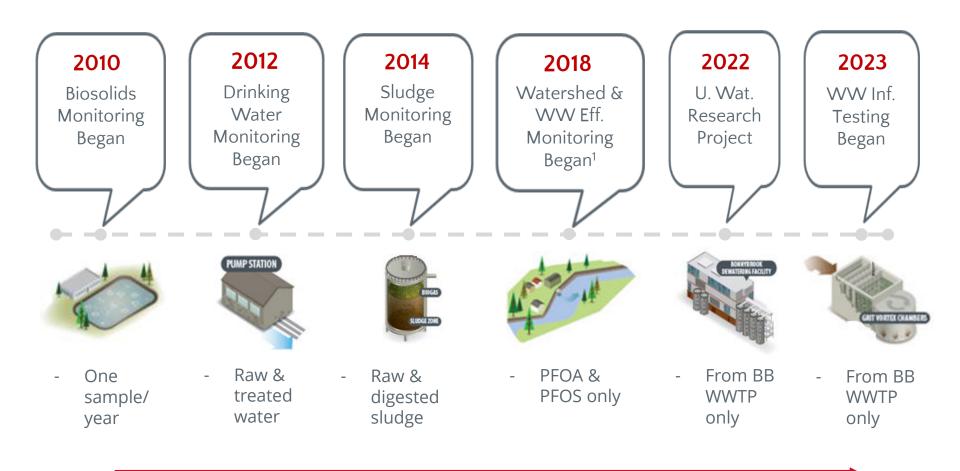


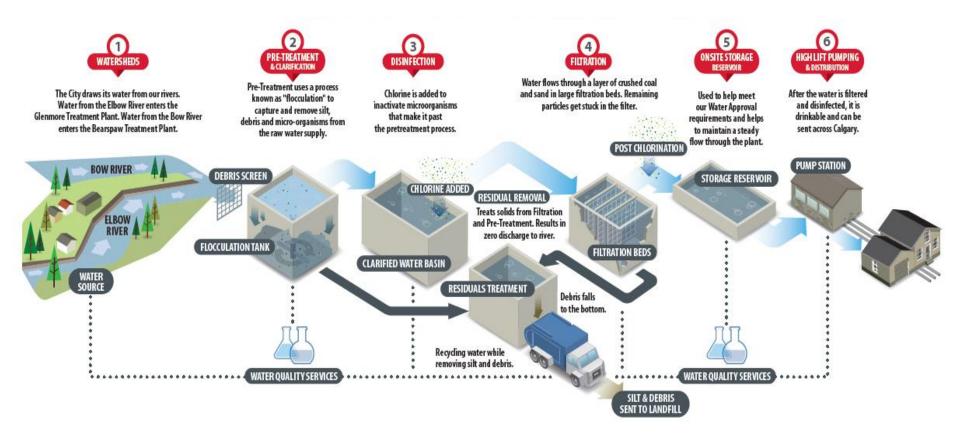
Calgary's Water Utility



 Your access to drinking water is RELIABLE and AVAILABLE.
You have drinking water now and for GENERATIONS TO COME.
Your drinking water is of high quality and SAFE TO DRINK. - You can rely on us to take care of your wastewater and PROTECT the HEALTH OF THE RIVER. - You can count on us to manage stormwater to PROTECT PUBLIC SAFETY and REDUCE DAMAGE to property.

- You can TRUST we will work with the community and partners to ensure our WATERSHEDS ARE HEALTHY.

PFAS Monitoring Timeline


Increasing **#** PFAS compounds tested & testing frequency over time

1. Arlos, M.J., Arnold, V.I., et al. 2023. Wat. Res. 244: 120454. https://doi.org/10.1016/j.watres.2023.120454.

Drinking Water Treatment

- Conventional processes that are not effective for removing PFAS
 - Source water protection is key

Source Water Protection & AFFF

- Source Water Protection Plan created in 2018, included risk characterization process

→ Is AFFF used in our upstream watershed, how is it used & how much?

Source Water Protection Plan

Protecting our source watershed through proactive collaboration

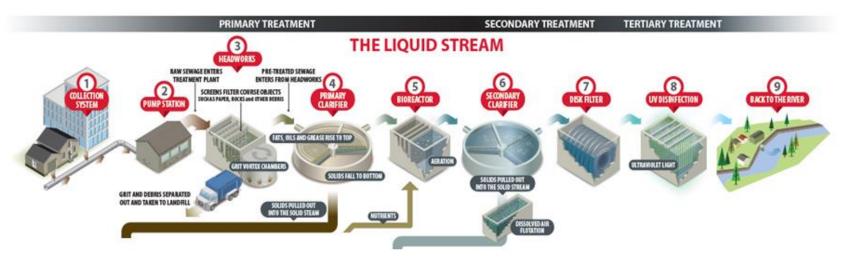
Project Findings & Outcomes

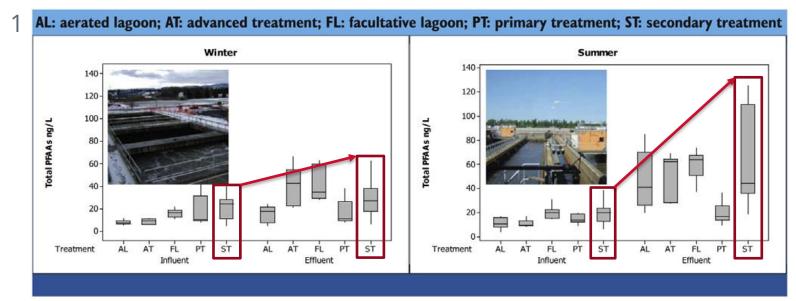
Product Name	Product Description	# of Upstream Fire Agencies Using	
Chemguard 3%/6% AR-AFFF C-361	AFFF for Class B and polar solvent fires, wetting agent for Class A fire	1	2 agencies
FireAde Class A	Fluorine-free Class A firefighting foam	3	have switched
FireAde [2000] Fire Fighting Foam	AFFF for Class A, B, C, D and K and polar solvent fires	5	fluorine- free foams
Hi-Combat A	Fluorine-free Class A firefighting foam	1	
Niagara 1-3 AR-FFFP	AFFF for Class A, B, C, D and K and polar solvent fires	1	- Info sharing
Phos-Chek LC95A	Long-term wildland fire retardant	1	highlighting mutual
Phos-Chek WD881 Class A Foam Concentrate	Fluorine-free Class A firefighting foam	2	benefits - Budgetary
Phos-Chek WD881C Class A Foam Concentrate	Fluorine-free Class A firefighting foam	1	constraints & performance concerns
T-Storm SFFF Class A	Fluorine-free Class A firefighting foam	1	main barriers to switching

Other Potential DW Risks

- Contamination from skiing activities upstream
 - Has created need for treatment elsewhere:

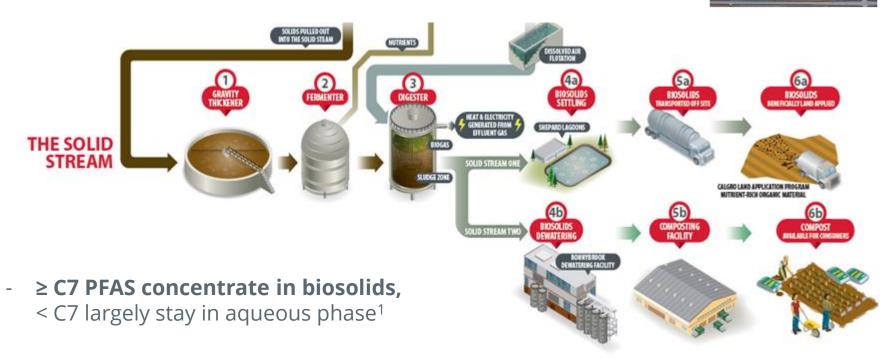
https://www.parkcity.org/departme nts/public-utilities/waterdivision/water-quality


- Contamination during DW distribution
 - From materials used in the distribution system and/or premise-plumbing:


https://link.springer.com/article/10.100 7/s11356-022-23085-7#Sec15

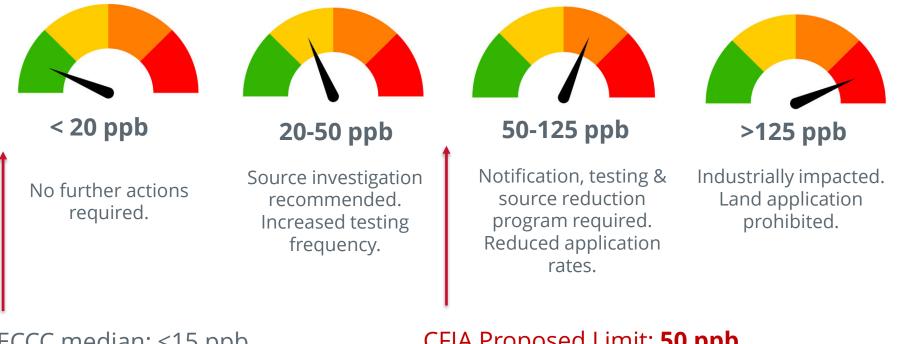
WW Liquid Treatment

- PFAS precursors \rightarrow PFAAs during biological treatment



Calgary 🚳 🛛 WW Solids Treatment & Beneficial Reuse

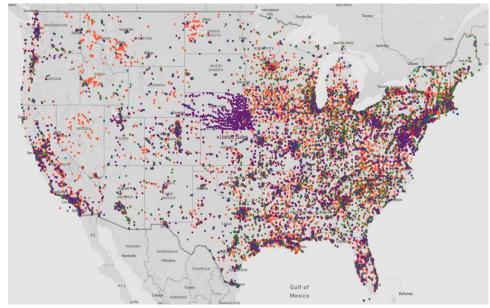
- Beneficial reuse of biosolids supported by the CCME & regulated by AEPA



PFAS in Biosolids

- Land application programs in Europe & Maine cancelled d.t. PFAS
 - Landfilling & incineration $\rightarrow \uparrow$ GHG emissions & costs
- Michigan Dept. of Env't Interim Strategy, PFOS¹:

ECCC median: <15 ppb COC median: ~10 ppb CFIA Proposed Limit: **50 ppb** for biosolids **imported** into Canada

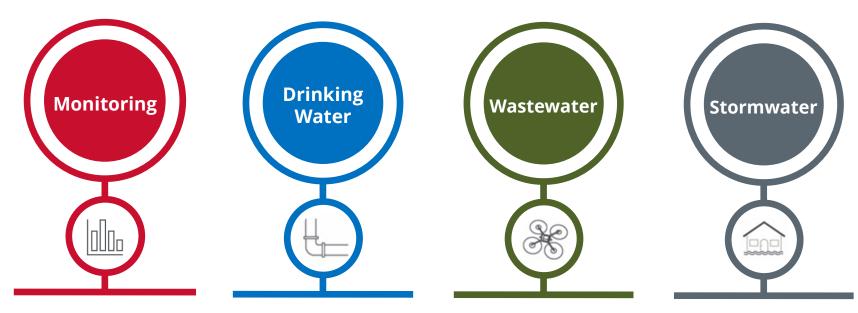


Industrial Sources of PFAS

- Several industries & companies = known emitters of PFAS
 - Lists available from many sources, including EWG:

Industry	
Electroplating, plating, polishing, anodizing and coloring	
Petroleum bulk stations and terminals	
All other miscellaneous chemical product and preparation r	manufacturing
All other miscellaneous fabricated metal product manufact	uring
Commercial printing (except screen and books)	
Plastics material and resin manufacturing	
Paint and coating manufacturing	
Semiconductor and related device manufacturing	
Other chemical and allied products merchant wholesalers	
Other electronic component manufacturing	
Other airport operations	
Gold ore mining	
Petroleum lubricating oil and grease manufacturing	

PFAS in Stormwater



Calgary

- PFAS detected in stormwater in San Francisco & Saskatoon
 - PFAS Synthesis and Strategy.pdf (sfei.org)
 - Metals and PFAS in stormwater and surface runoff in a semi-arid Canadian city subject to large variations in temperature among seasons | SpringerLink
- 60% stormwater samples + for microbial indicators of human fecal contamination
 - Stormwater often contaminated with raw sewage @ 0.1-10% ¹
- Looking into opportunities to conduct testing and research

Key Messages

PFAS monitoring has been ongoing since 2010 and is critical for assessing potential risk. Source water protection is key to minimizing PFAS in drinking water but must also consider water quality at consumer taps. Source control is key to *minimizing PFAS* in WWTP effluents & biosolids, and there are *many known industrial sources*. Stormwater likely contains PFAS, and we are *looking into* opportunities for *research & testing.*