PFAS RISK MANAGEMENT AT AIRPORTS

ESAA PFAS SYMPOSIUM, CALGARY AB

DECEMBER 6, 2023

HARRIS SWITZMAN, P.Geo, M.A.Sc. GM ENVIRONMENT AND SUSTAINABILITY HARRISS@YYC.COM

CALGARY AIRPORT AUTHORITY DE CALGARY

PRESENTATION FOCUS

Source control

Maria

Contaminated Site Management

Risk Management

WHAT ARE THE SOURCES?

Note: locations identified are conceptual only and not actual sources at YYC. Shown as a conceptua

WHAT ARE THE SOURCES?

AFFF SDS Composition Information

Chemical name	CAS No.	weight-%
2-(2-Butoxyethoxy)ethanol	112-34-5	5 - 10
Lauryl Imino Propionate, Sodium Salt	14960-06-6	1 - 5
Polyfluorinated alkyl betaine	Proprietary	1 - 5

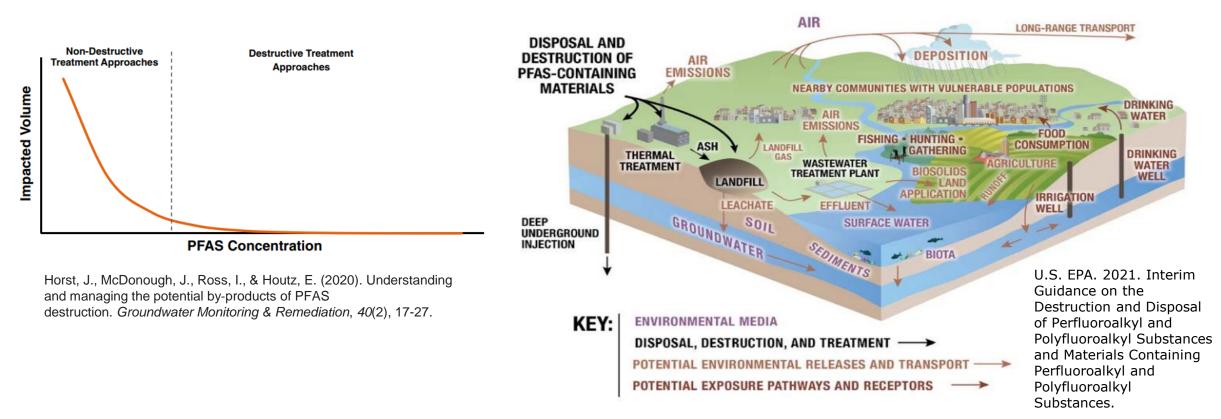
Emergency use

- All discharge of firefighting foam is considered an "environmental release"
- Foam, fuel and glycol mixtures can be complex to clean-up, particularly in winter

- Requires the use of "de-foaming agent"
- No available products to enhance breakdown must be physically or chemically removed
- AFFF emergency use no longer covered by environmental liability insurance
- Does residual absorb into pavement?

	and the second second			
	Switch foams		Change firefightin practices	ng
			practices	
-				
		Mar Tang		
Security of the state	运动和自己的 自己的			

SOURCE CONTROL YYC CALGARY AIRPORT AIRPORT AUTHORITY L'ADMINISTRATION AÉROPORTUAIRE DE CALGARY


Discretionary & accidental use

- Historical conflict between fire safety regulations/standards and PFAS goals
- Until a 2019 exemption Canadian Airports were required to use fluorinated Aqueous Film-forming Foam (AFFF).
- Airports were also required to discharge foam annually as part of fire truck certification.
- Hangars and fuel farms across Canada are also required to have AFFF.
- Regulatory changes have enabled less discharge of foam and adoption of fluorine-free foam (F3).

Destruction and disposal

 Incineration is one of the most common forms of disposal/destruction, however there are many sources of uncertainty about its effectiveness and risks (e.g., air emissions, failure to achieve needed temperatures / pressures at conventional incinerators, ash management)

L'ADMINISTRATION AÉROPORTUAIRE DE CALGARY

Foam Transition and Fire Truck Cleaning Project – Rinse Water

Table 3: Post-TOP Assay PFAS Cleaning Results for Engine Red 4

2

Sample ID	Sum of PFAS Post-TOP (ug/L)	PFOS (ug/L)	PFOA (ug/L)	PFPeA (ug/L)	
RED4-01-C	No sample was collected, as this represents presence of PFAS on the surface of the appara				tus
RED4-02-C	51,660	< 5,000	3,500	24,200	
RED4-03-C	2,088	< 200	120	1,120	
RED4-04-C	760	< 200	80	36	
RED4-05-C	896	< 200	84	372	
RED4-06-C	73	< 10	3.8	34	•

Courtesy of Arcadis

L'ADMINISTRATION AÉROPORTUAIRE

DE CALGARY

CALGARY AIRPORT AUTHORITY

Foam Transition and Fire Truck Cleaning Project - Swabbing

Table 4: Pre-Post TOP Post-TOP Assay PFAS Swab Results for Engine Red 4

131

2

Sample ID	Sum of PFAS Pre-TOP (ng/cm ²)	Sum of PFAS Post-TOP (ng/cm ²)
RED4-01-I/A/B	1,040	5,500
RED4-02-I/A/B	24	130
RED4-03-I/A/B	20	1,200
RED4-04-I/A/B	0.5	13
RED4-05-I/A/B	1.2	18
RED4-06-I/A/B	13	600

REBOUND?

Courtesy of Arcadis

L'ADMINISTRATION AÉROPORTUAIRE DE CALGARY

CALGARY AIRPORT AUTHORITY

TID	Description	Sum of PFAS pre- TOP (ug/L)	Removal %	Sum of PFAS post-TOP (ug/L)	Removal %
RED4-02-C	Red 4 - Post Water Rinse 1	5,510		51,660	_
RED4-03-C	Red 4 - Post FF1	1,060		2088	
RED4-04-C	Red 4 - Post FF2	185	99.70%	760	99.86%
RED4-05-C	Red 4 - Post FF3	183		896	
RED4-06-C	Red 4 - Post Water Rinse 2	17		73	
RED2-02-C	Red 2 - Post Water Rinse 1	31,817		137,400	
RED2-03-C	Red 2 - Post FF1	1,469		4,000	
RED2-04-C	Red 2 - Post FF2	144	99.93%	558	99.92%
RED2-05-C	Red 2 - Post FF3	53		168	
RED2-06-C	Red 2 - Post Water Rinse 2	24		105	
RED1-02-C	Red 1 - Post Water Rinse 1	5,323		44,460	
RED1-03-C	Red 1 - Post FF1	338		1,094	
RED1-04-C	Red 1 - Post FF2	181	99.49%	1,556	99.17%
RED1-05-C	Red 1 - Post FF3	57		780	
RED1-06-C	Red 1 - Post Water Rinse 2	27		367	
RED5-02-C	Red 5 - Post Water Rinse 1	4,757		95,000	
RED5-03-C	Red 5 - Post FF1	103		930	
RED5-04-C	Red 5 - Post FF2	6.8	99.96%	42	99.97%
RED5-05-C	Red 5 - Post FF3	2.5		20	
RED5-06-C	Red 5 - Post Water Rinse 2	1.9		27	

DECONTAMINATION PROJECT OVERVIEW

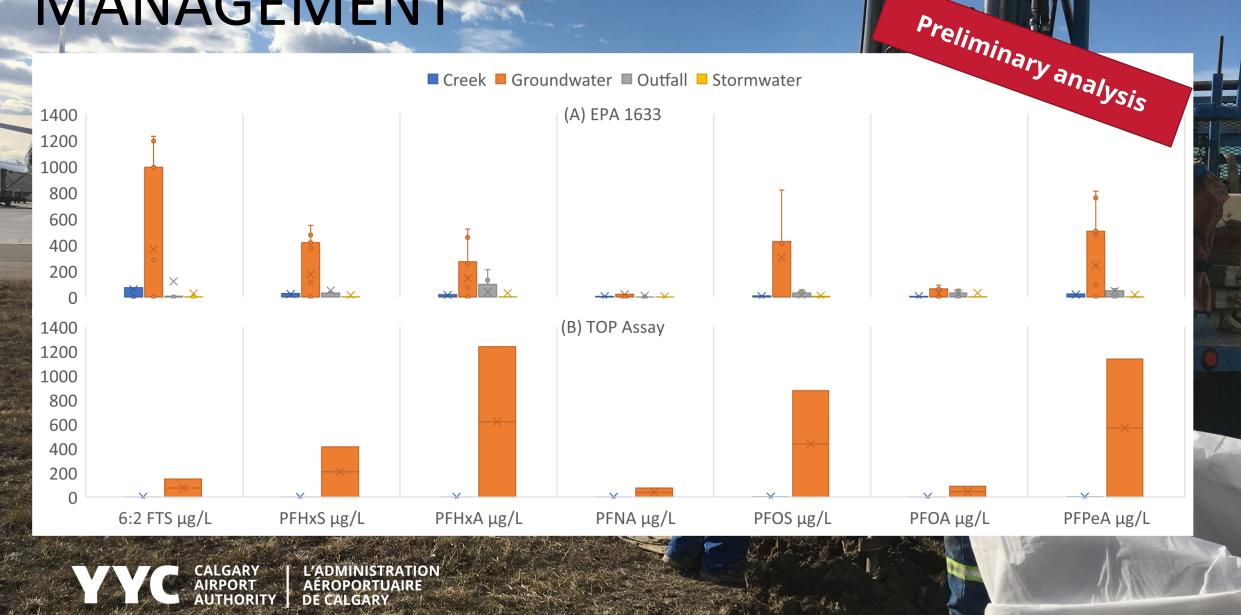
\$250k for truck decontamination

- + \$170k for rinsate disposal
- + 1 year of detailed planning
- + 50,000 L of rinse water and pure product
- + 6 weeks in the field

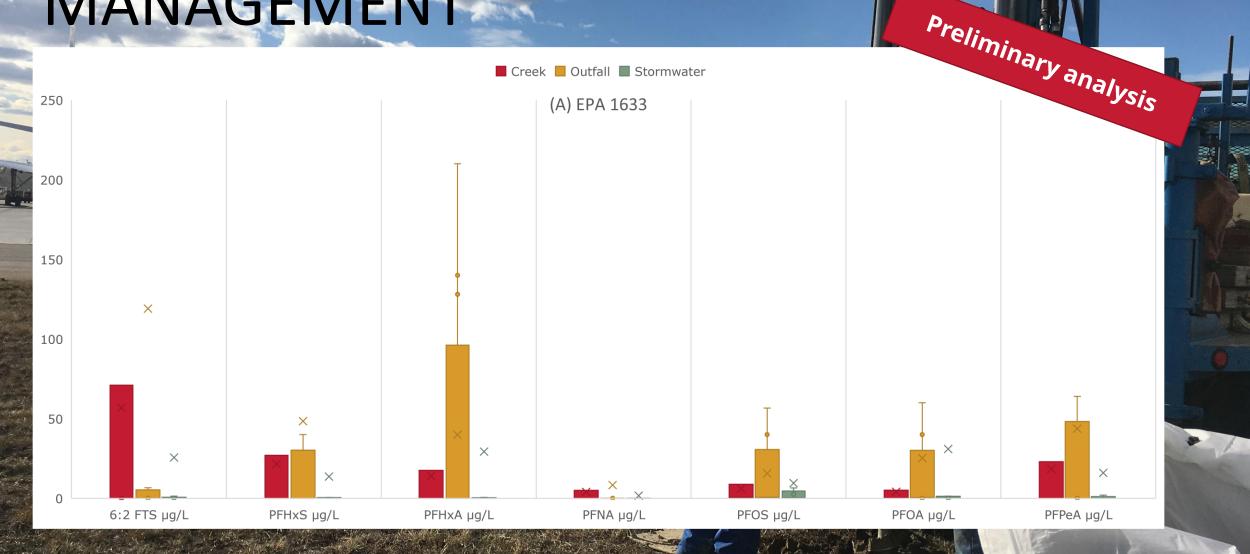
+ Min of 88 samples (includes water and swab) sent to Minnesota, Ontario and the UK

4 x Decontaminated ARFF Trucks and LOTS of data!

CONTAMINATED SITE MANAGEMENT


Risk Management Considerations:

- **Cumulative effect on receptors (i.e., 'funneling'** by drainage infrastructure).
 - **Multiple sources of PFAS**
 - Multiple types of PFAS compounds at each source
 - Multiple pathways for transport
- **Residual along transport pathways Groundwater-surface water interactions** associated with drainage ponds and deep utilities.
- Construction projects that move and disturb soil have the potential to spread and transform PFAS constituents.


Present in environmental media (of 40 PFAS compounds in EPA 1633:

	11Cl-PF3OUdS	PFOS
	PFBA	PFPeA
	PFHxS	6:2 FTS
杨	PFHxA	PFBS
	PFNA	PFOS

CONTAMINATED SITE MANAGEMENT

CONTAMINATED SITE MANAGEMENT

L'ADMINISTRATION CALGARY AÉROPORTUAIRE DE CALGARY AUTHORITY

AIRPORT

LESSONS LEARNT

- Identify potential sources past and present (integrate PFAS into phased ESA process).
- Longitudinal sampling is critical to identify trends. Single sampling events are difficult to interpret.
- Sample results show effects related to cumulative nature of PFAS contaminants.
- Switch to fluorine-free alternatives wherever possible as soon as possible.
- Obtain as much "upstream" supply chain information as possible.

RY L'ADMINISTRATION T AÉROPORTUAIRE RITY DE CALGARY

KEY QUESTIONS

- How clean is clean enough (for assets and environmental media)?
- What is the best indicator of PFAS risk (TOF, Total PFAS, Total TOP?)
- What do we make of TOP Assay data?
- How will insurance companies and regulators handle "residual" or incidental PFAS?
- Can isotopes be used to trace PFAS compounds?
- How can we partner on a watershed basis to address PFAS sources and cumulative effects?

THANK YOU!

CONTACT INFO: Harris Switzman, HarrisS@yyc.com

> YYC CALGARY AIRPORT AUTHORITY | L'ADMINISTRATION AÉROPORTUAIRE DE CALGARY