Vertex Environmental Inc.

Treating PFAS In-Situ

December 6, 2023 ESAA PFAS Symposium Bruce Tunnicliffe, M.A.Sc., P.Eng.

Outline

- Why is PFAS remediation difficult?
- In-Situ Remediation of PFAS
 - Comparison of 2 Amendments
- Closing

Background

Bruce Tunnicliffe, M.A.Sc., P.Eng.

- Masters U of Waterloo. Remediation
- Founder Vertex Environmental Inc.
- Founder SMART Remediation

Vertex Environmental Inc.

- Started July 2003
- Environmental Contractor

VERTE

Why is PFAS Remediation Difficult?

Why is PFAS Remediate Difficult?

PFAS is a Group of Chemicals

- Some say more than 4,500
- Laboratories report ~40 PFAS
- PFAS = Dark Matter?
 - you don't know what you have
- Long chain can degrade to short chain
- Generally short chains are more toxic and mobile than long chains
- Documented water treatment issues
 - e.g. hydrogen peroxide is added during water treatment, the short chained PFAS effluent concentration is higher than influent conc.

VERTE)

A Take Away Be careful with in-situ PFAS destruction approaches, you have to consider precursors

Why is PFAS Remediate Difficult?

How They Are Made

- Human made
- A fossil fuel derivative
- To make PFAS, replace the hydrogen with fluorine
- Carbon-Fluorine (C-F) bond:
 - strongest covalent bond in organic chemistry
- Low to no degradation under natural conditions
- PFAS thermally degrades at >800°C

A Take Away Traditional in-situ remediation approaches will be very difficult to apply due to PFAS characteristics

Aliphatic Compound

Perfluorooctane sulfonic acid (PFOS)

Perfluorooctanoic acid (PFOA)

Remediating PFAS In-situ

What Can We Do Right Now?

Remediating PFAS, in-situ

Adsorption / Stabilization:

Amendments exist that can be injected into the subsurface:

FLUORO-SORB® 100

Activated Carbon PlumeStop®

Modified Clay Fluoro-Sorb®

G.Niarchos et al., 2023 - "In-situ application of colloidal activated carbon for PFAS-contaminated soil and groundwater: A Swedish case study"

In-situ with Activated Carbon

Activated Carbon

Activated Carbon – Roll Over, or Competitive Adsorption

- PFAS >4,500 compounds
- Long Chain PFAS
 - Preferentially adsorbed
- Short Chain PFAS
 - Get "kicked off" the carbon

In-situ with Activated Carbon

Remediating PFAS, in-situ with Modified Clay

FLUORO-SORB® 100

- The modified clay adsorption is ion exchange as well as hydrophobic attraction
- PFAS is surfactant-like, thus partially hydrophobic

Remediating PFAS, in-situ with Modified Clay

Modified Clay Sorption Mechanism

FLUORO-SORB® 100

VERTE)

How PFAS is Sorbed

Increasing PFAS Adsorption

Credit: CETCO

In-situ with Modified Clay

Remediating PFAS, in-situ with Modified Clay

Groundwater Results 11 Months After Install

	2.5% MC	5% MC	7.5% MC
Vol. of Treated Water (m ³)	~50	~48	~47
Adsorbed ∑PFAS (mg)	~1,021	~1,233	~1,216
Removal Efficiency (%)	98.1%	95.3%	97.4%

Closing Thoughts

In-Situ Remediation of PFAS

- PFAS remediation is in a development stage
 - Research, experimentation, pilot tests
 - Very exciting times
- PFAS Destruction is difficult
 - We have to be careful with precursors
- Two proven in-situ injectable approaches, using:
 - Activated Carbon (specifically, colloidal activated carbon)
 - Modified Clay (specifically, Fluoro-Sorb[®])
- Current Assessment:
 - Activated Carbon In-Situ PFAS Remediation Approach 1.0
 - Modified Clay In-Situ PFAS Remediation Approach 2.0

Questions?

Thank You for Your Time

Bruce Tunnicliffe Vertex Environmental Inc. (519) 249-9184 mobile brucet@vertexenvironmental.ca

www.vertexenvironmental.ca

