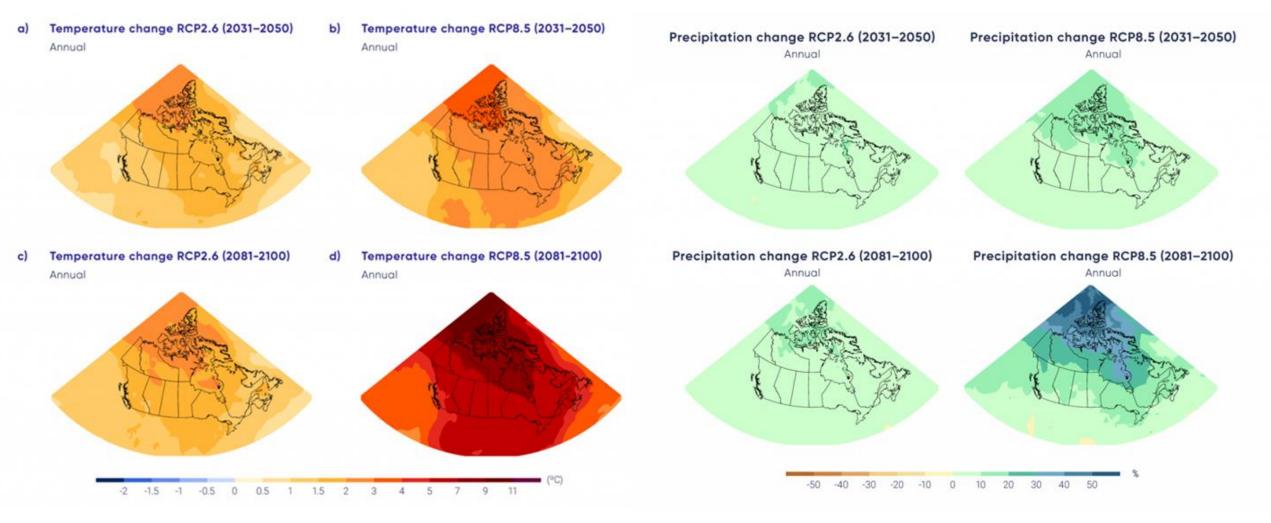


Challenging today. Reinventing tomorrow.

Conducting a Climate Change Resilience Assessment in Support of Remedy Selection

Janelle Langlais (Government of Yukon, Whitehorse, YK), Lindsay Shaw (Jacobs, Calgary, AB), Betsy Collins (Jacobs, Raleigh, NC, USA), and Chuck Shewen (Jacobs, Whitehorse, YK)

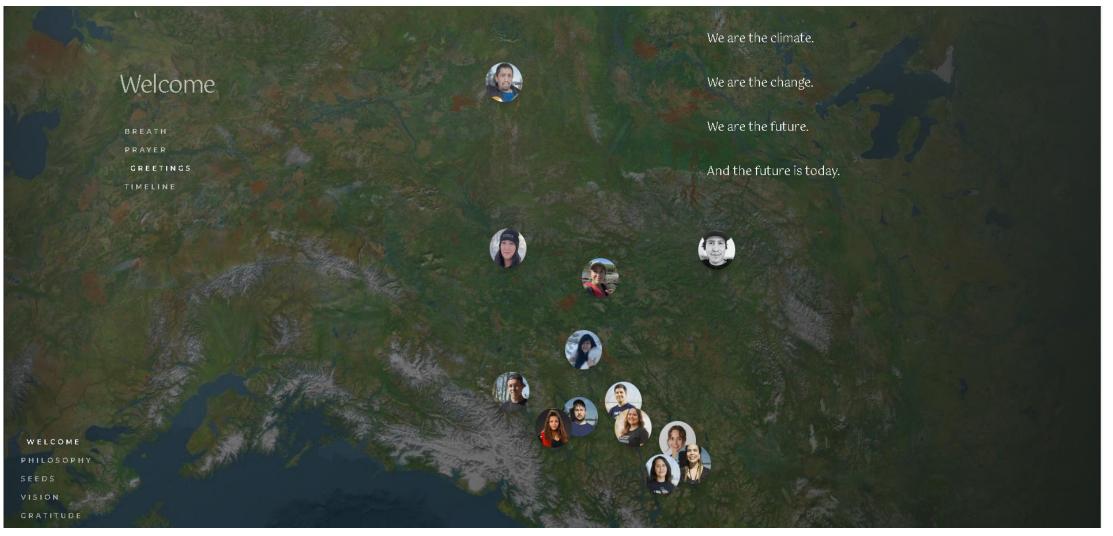

Agenda

- Why are we talking about this
- Project Overview
- Methodology
- Results
- Conclusions

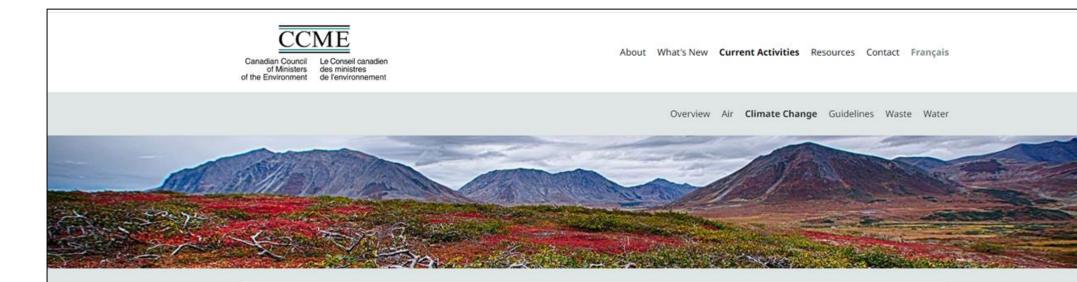
https://arctic-council.org/ 2020 photo credit GBP Creative

Climate Change in Canada

Canada's Changing Climate Report <u>https://publications.gc.ca/collections/collection_2019/eccc/En4-368-2019-eng.pdf</u>


Changes on the Land

cbc.ca/photo submitted by Kevin Turner


Yukon Protective Services/Facebook

Yukon First Nations Climate Change Emergency Declaration

Yukon First Nations Climate Action Fellowship (2023). Reconnection Vision. Yukon, Canada.

Canadian Council of Ministers of the Environment

Climate Change

Climate change is affecting all of Canada.

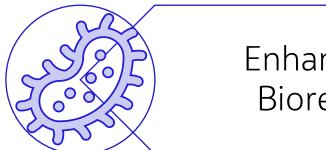
Federal, provincial and territorial ministers recognise that addressing climate change is a shared responsibility and are working collaboratively and within their jurisdictions to take action.

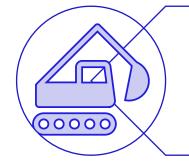
CCME serves as a collaborative forum to identify, prioritize and effectively address climate change issues and opportunities of strategic importance to federal, provincial and territorial ministers. CCME is developing guidance for management of contaminated sites located in permafrost and permafrost transition zones.


Project Overview

- Location: Northern Yukon
- Site Geology:
 - Permafrost
 - Muskeg and kettle lakes
 - Inactive fluvial deposits
 - Underlain by approximately 30 m of stratified fine silt, clay, and sand
- Nature and Extent of Contamination:
 - Petroleum hydrocarbon (PHC) contamination in the soil and suprapermafrost water at multiple sites

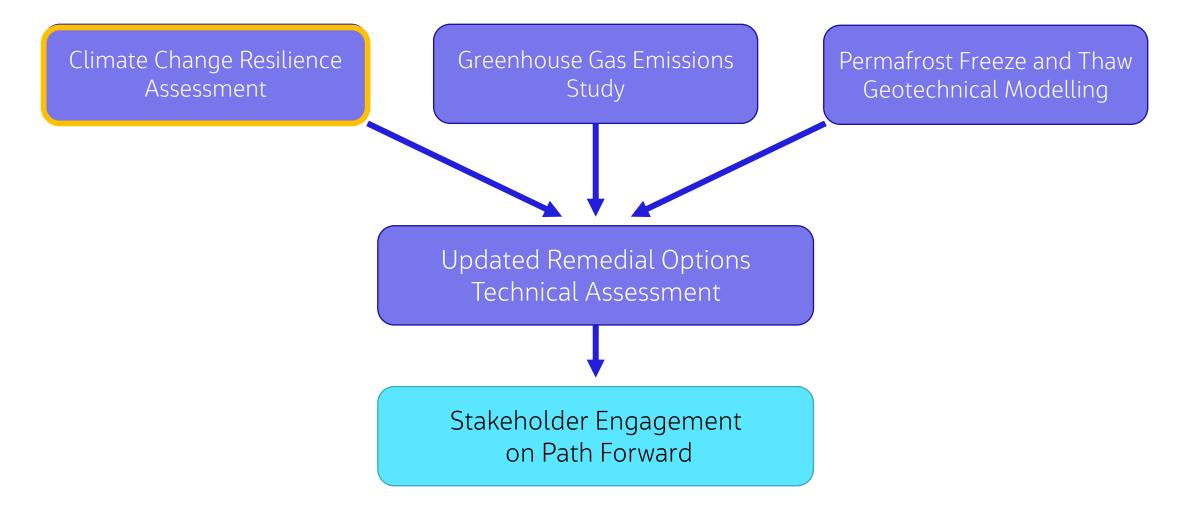
Photo credit Government of Yukon


Remedial Options Assessment


Natural Source Zone Depletion (NSZD) and Risk Management

Excavation and Transportation via Winter Road

Enhanced In-Situ Bioremediation


Excavation and Land Treatment on a mountain plateau

Excavation and Thermal Treatment

Excavation and Land Treatment on low lying lands

How will this information be used?

Climate Change Resilience Assessment

- Process: Comparable to PIEVC and ISO 31000
- Purpose: Identify and evaluate climate risks under the current climate (past 30 years) and predicted future scenarios by (2050 and 2080)

www.strategicassessmentclimatechange.ca/ Canada

Climate Events

	Climate Event	Trend	
	Summer Mean Temperature (°C)		
	Winter Mean Temperature (°C)		Current 2050 2080
Temperature	Days Above 25°C		
	Day Below -25°C	+	
	Annual Precipitation (mm)		
	Maximum 5 Consecutive Days (mm)		
Precipitation	Maximum 1-day Precipitation (mm)		Current 2050 2080
• • •	High Intensity, High Volume Rain Storm (mm in 1 hour in 100 year cycle)		
	Winter Precipitation (mm, water equivalent)		
	Flooding Frequency (Open-water and ice-jam)	?	
Other (qualitative)	Landslide	2	Current
	Permafrost Thaw (temperature)		

	Critical	5	5	10	15	20	25
	Major	4	4	8	12	16	20
Consequence	Moderate	3	3	6	9	12	15
Rating	Minor	2	2	4	6	8	10
	Insignificant	1	1	2	3	4	5
			1	2	3	4	5
			Improbable	Remote	Occasional	Probable	Frequent
				l	likelihood Rating	9	

	Critical	5	5	10	15	20	25
	Major	4	4	8	12	16	20
Consequence	Moderate	3	3	6	9	12	15
Rating	Minor	2	2	4	6	8	10
	Insignificant	1	1	2	3	4	5
			1	2	3	/.	5
				<u> </u>	_	4	5
			Improbable	Remote	Occasional	Probable	Frequent
				l	Likelihood Rating	9	

Improbable	Not likely to occur in the period
Remote	Likely to occur once between 30 and 50 years
Occasional	Likely to occur once between 10 and 30 years
Probably	Likely to occur at least once a decade
Frequent	Likely to occur once or more annually

	Critical	5	5	10	15	20	25
	Major	4	4	8	12	16	20
Consequence	Moderate	3	3	6	9	12	15
Rating	Minor	2	2	4	6	8	10
	Insignificant	1	1	2	3	4	5
			1	2	3	4	5
			Improbable	Remote	Occasional	Probable	Frequent
	*						
R	0				Likelihood Rating	9	
Ω	$\mathbf{\Phi}$						
₩₩ Safety							
Safety	Efficacy E	nvironment					

	Critical	5	5	10	15	20	25
	Major	4	4	8	12	16	20
Consequence	Moderate	3	3	6	9	12	15
Rating	Minor	2	2	4	6	8	10
	Insignificant	1	1	2	3	4	5
			1	2	3	4	5
			Improbable	Remote	Occasional	Probable	Frequent
				l	Likelihood Rating	9	

Risk Classification	Rating	Recommended Risk Treatment (Adaptation)
_ow (No Colour)	1-9	No action necessary
Medium (Yellow)	10-19	Action may be required
High (Red)	20-25	Action required

An example

Remedy: Excavation and Transportation via Winter Road

) Time Horizon: Current

Climate Event: Increasing Summer Mean Temperature

Risk Rating Heat Map

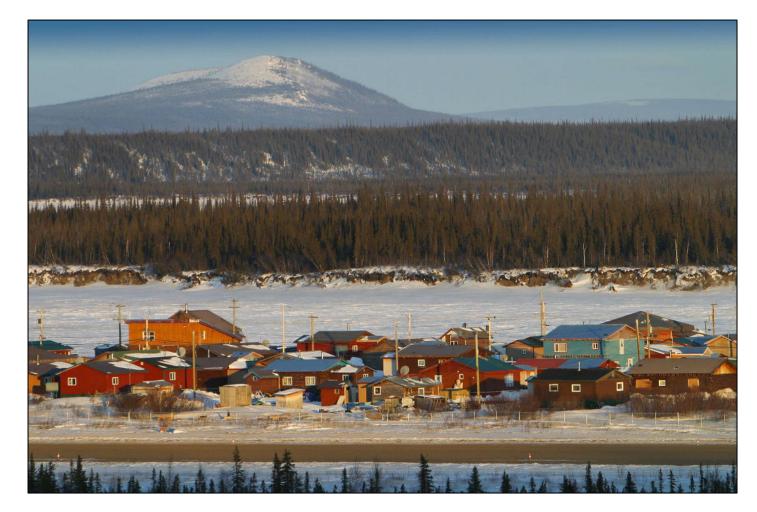
			1	2	3	4	5
	Insignificant	1	1	2	3	4	5
Rating	Minor	2	2	4	6	8	1 <mark>0</mark>
Consequence	Moderate	3	3	ú	9	12	15
	Major	4	4	8	12	16	20
	Critical	5	5	10	15	20	25

Potential Consequences	Identified Adaptation Measures	
Increase permafrost impacts caused by excavation		
Thawing permafrost impacts sidewall stability	Insulate the open excavation to limit permafrost thaw	
Thawing permafrost may increase dewatering requirement		

©Jacobs 2023

	Excavation and Transportation via Winter Road	U Current	2050	0 2080	
	Summer Mean Temperature (°C)	15	15	15	
	Winter Mean Temperature (°C)	5	5	5	
	Days Above 25°C	15	15	15	
	Day Below -25°C	5	5	4]
	Annual Precipitation (mm)	4	4	4	
	Maximum 5 Consecutive Days (mm)	8	8	8	328
	Maximum 1-day Precipitation (mm)	8	8	8	
• • •	High Intensity, High Volume Rain Storm (mm in 1 hour in 100 year cycle)	5	5	10	
	Winter Precipitation (mm, water equilvalent)	20	25	25	
	Flooding Frequency (Open-water and ice-jam)	High (25)			
	Landslide	Low (9)			
	Permafrost Thaw (temperature)	High (25)			

	NSZD and Risk Management	Current	0 0 0 0 0 0 0 0 0 0	U 2080	
	Summer Mean Temperature (°C)	10	10	10	
	Winter Mean Temperature (°C)	15	15	15	
	Days Above 25°C	5	5	5	
	Day Below -25°C	15	15	12	
	Annual Precipitation (mm)	12	12	12	
	Maximum 5 Consecutive Days (mm)	12	12	12	278
	Maximum 1-day Precipitation (mm)	12	12	12	
• • •	High Intensity, High Volume Rain Storm (mm in 1 hour in 100 year cycle)	2	2	2	
	Winter Precipitation (mm, water equilvalent)	4	5	5	
	Flooding Frequency (Open-water and ice-jam)	Low (9)]		-
	Landslide	Low (9)			
	Permafrost Thaw (temperature)	Low (9)			


Overall Resiliency Rankings

Overall Risk Rating	Climate Resiliency Rating
30-240	High Resiliency
241-480	Moderate Resiliency
481-750	Low Resiliency

Remedial Option	Overall Risk Rating (0 to 750)	Climate Resiliency Rating
In-situ Bio-remediation	187	High Resiliency
NSZD	278	Moderate Resiliency
Excavation and Thermal Treatment	280	Moderate Resiliency
Excavation and Transportation out of Old Crow	328	Moderate Resiliency
Excavation and Land Treatment on Mountain Plateau	382	Moderate Resiliency
Excavation and Land Treatment on Low Lying Lands	418	Moderate Resiliency

Conclusions

- Increased challenges, risks and costs with the acceleration of climate change.
- Proactively planning for climate change is key for:
 - Identifying project challenges and risks;
 - Implementing adaptation measures and mitigation strategies;
 - Protecting human health and the environment;
 - Cost savings.
- Stakeholder engagement helps inform the project.

utoronto.ca Photo credit Deddeda/Alamy

Don't forget to come by the Jacobs Booth (#26)

Jacobs looks forward to

RemTech 2023

Banff, AB | October 11-13, 2023 Visit booth No. 26

Bahman Bani Senior Environmental Remediation Engineer

Kendra Waltermire Senior Environmental Remediation Engineer

Lindsay Shaw Geologist

Tom Palaia Principal Technologist

Climate References

- Climate Data Canada (ECCC 2023a)
- Climate Atlas of Canada, Climate Atlas Report (Climate Atlas of Canada 2022)
- Landscape Hazards (Benkert et al. 2016)
- Exposure analysis and risk reduction recommendations (Turcotte and Saal 2022)
- Project Planning Guidelines for Permafrost Management (Morrison Hershfield 2022)
- Design and Implementation of Early Detection and Warning Systems for Transportation Infrastructure impacted by permafrost-related geohazards (Calmels et al. 2022)