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PFAS Presents New Challenges

» Persistence — Extremely resistant to
environmental and metabolic degradation

» Mobility- Readily transported long
distances in air and water

» Diversity- A wide range of potential
sources

» Very low regulatory screening
concentrations, e.qg. parts per trillion

(pptr.)

» In U.S. we are dealing with Residential
Screening Levels (RSLs) as low as 4 pptr.
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What Does This Mean for PFAS Groundwater Investigations:

& PFOS [zocomcentration

» We are tasked with defining large and dilute
groundwater plumes

» Groundwater plumes ~10 km?in area
» Multiple potential sources encompassed.

» Support of Interim Remedial Actions

» The industry standard “Step-out” approach,
guided by concentration is inefficient and
expensive.

» May not provide key data targeted with

respect to subsurface heterogeneity
necessary for remedial alternatives analysis

PFAS Requires a More Advanced Approach To Groundwater Investigation



What Does An Ac

The Environmental Sequence Stratigraphy (ESS) Process

o Research regional geology to Leverage existing lithology data: 9 Map and predict
determine depositional environment, vertical grain size patterns indicative of the subsurface permeability
the foundation of the ESS evaluation. enetic relationships. architecture away from the data points.

Advanced Methods of
Stratigraphic Correlation:

» Environmental Sequence
Stratigraphy

- ESS brings facies models back to
future

* Sequence strat. principles guide
correlation of subsurface
permeability

Advanced Methods of Data
Interrogation and Visualization:

» Mapping Software and Database
Management

 Increased use of legacy and regional
data

» 3D visualizations of HRSC data
constrained by stratigraphic data:
* Fence Diagrams and “dummy points”

Advanced Methods of
Delivery:

» Digital CSMs
* Web-Application approaches
« XYZ data and Strat Surface Files

* Increasing direct connectivity with
numerical modeling approaches

ESS is Step 1 in an advanced approach to groundwater remediation



The Challenge of the Subsurface

NATIONAL RESEARCH COUNCIL

OF THE NATIONAL ACADEMES

ALTERNATIVES FOR MANAGING
Geologic complexity is a recognized THE NATION’S COMPLEX

impediment to progress . CONTAMINATED GROUNDWATER SITES

» National Academy of Sciences defined 12,000
groundwater remediation sites as “complex”

» And concluded that “.... Due to inherent geologic
complexities, restoration within the next 50-100
years is likely not achievable

Alternatives for Managing the Nation's Complex Contaminated
Groundwater Sites

National Academy of Sciences Committee on Future Options for
Management in the Nation's Subsurface Remediation Effort, 2013




Why Advanced Methods of Stratigraphic

Correlation Are Key:

The groundwater gradient is not the
principal control on flow, the
stratigraphy is.

» Critical to recognize these types of
nuance and tackle them head on.

» Site geology provides The Conceptual
Site Model’s (CSM) foundation: The
Plumbing -




» Based on principles and a
knowledge base developed in the
world of petroleum exploration

» Emphasis on moving past your
“postage stamp” of data

» Context and research that allows
you recognize key observations in
lithologic logs

» Utilize spatial distribution of
grainsize trends

» Create geologically defensible
correlations

https://cfpub.epa.qov/si/si_public _record report.cfm?dirE
ntryld=341373&Lab=NRMRL
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https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=341373&Lab=NRMRL

A Three Step Process

The Environmental Sequence Stratigraphy (ESS) Process

I

o Research regional geology to eLevera‘ge existing lithology data:
determine depositional environment, vertical grain size patterns indicative of
the foundation of the ESS evaluation. genetic relationships.




Depositional Models and Modern Analogues

Glacial environment
. 4 Lake
Fluvial environment
Alluvial '
Eolian  fan
Playalake (dunes)

Depositional
environment
and typical

grain size
profile

Major aquifer
elements and
their common
dimensions

Alluvial Fan Proximal fan channels,
fne  cowse  mid-fan sheet sands,
E— distal fringe sands

X: 102m-10*m

Y: 10'm=-10°m

Z:10"m=-10'sm
coarsening-upward

Meandering Channel axial fill, pont

Fluvial bar, crevasse splays
X:1m=-10'sm
\ Y: 10°m-10m
r—") Z 10'm-10m
fining-upward

Braided Channel axial fill, bar

Fluvial complex

i X im-10'm
< Y: 0'm=10m
=% Z 10'm=-10'm

biocky

Major aquitard
elements and
their common
dimensions

Playa lake deposits or
paleosol formations
commonly vertically
separate fans. Debris-flow
deposits also commonly

clay-rich.
X 10Pm-10"m
Y: 10¢m-10°m
Z: 10'm-10's m

Floodplain deposits, levee
deposits, clay drapes on
lateral accretion surfaces,
plugs filling abandoned
channels.

X 10°m-10°m

Y. 10:m=-10°m
Z:10'm-10'sm

Floodplain deposits, silt
and clay plugs filling
abandoned channels,
X 10¢m=10°m

Y: 10*m-102m

Z 10'm=-1sm

Impact on CSM

Laterally extensive paleosol or playa lake deposits may be thin (10's of cmto
meters), but can vertically compartmentalize aquifers. Such thin aquitards may
not be recognizad by non-continuous sampling methods due to their thin
nature. Fans have a primary stratigraphic dip basinward at 1-6 degrees, and
are laterally offset stacked ("shingled”). Fans are constructed primarily by
channels encased in sheet-flood deposits. Channels are radial from a point
?:urce and represent permeable pathways. Channel density decreasing down-
n.

Channel and point-bar deposits are encased in fine-grained floodplain deposits
and represent the groundwater flow pathways. Tracitional petentiometric
surface maps are poor predictors of specific groundwater flow paths and
contaminant migration pathways. Coarse-grained “lags” at the bases of
channels and point bars represent high-permeabilty pathways. Lateral
accretion drapes can form “shingled” aquifer units. Clay plugs filling
abandoned chanrels ("oxbow lakes”) common and provide barriers o
groundwater flow and contaminant fate and transport.

Low-sinuosity high-permeability streaks encased within an overall permeable
matrix may dominate groundwater flow and contaminant migration. Laterally
discontinuous silt and clay units may be significant at the plume scale, and are
more continuous in the down-channel direction compared to the cross-channel
direction.

Depositional environments have distinctive vertical grain size
distributions

Data resolution
needs

High in vertical sense,
need for lateral resolution
decreases down-fan
where channels are less
predominant.

High beth laterally and
vertically

High beth laterally and
vertically, greater lateral
resolution required
pemendicular to
depositional axis (ie..
cress-channel transacts)
versus paralle! to
depositional axis (down-
channel)



Applying the Basic Methodology
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Applied at Over 60 United States Dept. of Defense Locations \\

Groundwater Monitoring & Remediation 43, no. 3/ Summer 2023/pages 79-92

Gmundeater

Monitoring&Remediation
I —

Leveraging Sequence Stratigraphy to Accelerate
Site Remediation: Pliocene Citronelle Formation,

Eglin Air Force Base, Florida, USA

by Mike Shultz, Colin Plank, Mark Stapleton, Leo Giannetta and Rick Cramer

@ Installations with Completed CSMs
0 Installations with Newly Awarded and Ongoing CSMs




Midwestern Rive

PFAS Remedial Site Investigation Guided By ESS

» Task: Create CSM to guide remedial
Investigation
» Direct Push- Vertical Aquifer Profiling (VAP)

and Electrical Conductivity /Hydraulic
Profiling Tool (EC-HPT)

» Goals: PFAS delineation, planning of “final”
monitoring well network

» The unusual plume geometry initially
presented in a preliminary site assessment
suggests stratigraphic heterogeneity




Fluvial Analogue and Facies Models: Evolution from Braided

Fluvial to Meander Belt

Sedimentary facies model:

fluvial meander belt sedimentation L1 SAND

[ SILT - LOAMY SAND
I SILTY-CLAY

= Ample cause to expect N e
heterogeneity shallow “ PS5 Vi
and coarser grainsizes - s =] (B )
at depth. BN A A

Distribution and orientation of grain sizes
and bedding within meandering river depaosits.
Loamn refers to a combination of fine sand, silt, and clay.
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Historical Analysis Provides the Answer §
(For Upper 25 ft...) A\

Historic Maps and Imagery

.

W T
and Well Distribution

1. Relict Meander Point Bar “Core” 3. Braided Meander -Contraction
1.5. Quarry Creek Fan 4. Braided Meander - Translation
2. Abandoned Chute Area




Overview Of Site Stratigraphy and Initial CSM Elements
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N §
Planned RI Investigation \\

VX

» 2 phases Ty

@ EC-HPT data collected first s, N\ OGN @
@ 8 with detailed ESS lithologic logging to R N
calibrate, test CSM

» VAP groundwater grabs at all locations
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ESS —Graphical Approaches to Core Logging
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Updated ESS Cross Sections and Conclusions \\

Plume Axis 2 Cross-Section
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Right hand turn in plume
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The Outcome: Targeted Well Placement

» Confirmed impact of Clay plug on
isolating/deflecting GW shallow

» PFAS Plume Drawn under during pumping

SN rad
4 » Y f. 'T;'.I 48-Mmwa
» Shallow Migration eastward in absence of pumping ‘ O\ §° A% e ﬁ‘k’q;'z)./

&

potentially facilitated by relict chute channel | \ YA S nics 729

» 11 Wells Located During Working Sessions of Rl
Team

» Approximate Position Of Proposed Wells

*




General Conclusions

» ESS is an established best practice for improved CSM
development

» The three-step process is possible to implement
with the types of lithologic data traditionally
available in the environmental industry

» An ESS CSM creates a predictive framework and
improved context that can guide a more efficient
and effective PFAS investigation

https://cfoub.epa.qov/si/si public record report.cfm?dirEntryld=34

1373&Lab=NRMRL
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BACKGROUND

This issue paper was prepared at the request of the
Environmental Protection Agency (EPA) Ground Water Forum.
The Ground Water, Federal Facilities, and Engineering Forums
were established by professionals from the United States
Environmental Protection Agency (USEPA) in the ten Regional
Offices. The Forums are committed to the identification

and resolution of scientific, technical, and engineering

issues impacting the remediation of Superfund and RCRA
sites. The Forums are supported by and advise Office of
Solid Waste and Emergency Response’s (OSWER) Technical
Support Project, which has established Technical Support
Centers in laboratories operated by the Office of Research
and Development (ORD), Office of Radiation Programs, and
the Environmental Response Team. The Centers work closely
with the Forums providing state-of-the-science technical
assistance to USEPA project managers. A compilation of issue
papers on other topics may be found here:

http:/fwww epa.gov/superfundfremedytech/tsp/issue_htm

The purpose of this issue paper is to provide a practical guide
on the application of the geologic principles of sequence
stratigraphy and facies models (see "Definitions" text box,
page 2) to the characterization of stratigraphic heterogensity
at hazardous waste sites.

Application of the principles and methods presented in this
issue paper will improve Conceptual Site Models (CSM)

and provide a basis for understanding stratigraphic flux and
associated contaminant transport. This is fundamental to
designing monitoring programs as well as selecting and
implementing remedies at contaminated groundwater sites.
EPA recommends re-evaluating the CSM while completing the
site characterization and whenever new data are collected.
Updating the CSM can be a critical component of a 5 year
review or a remedy optimization effort.
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A Major Obstacle For Performance : The Inherent Complexity of the &

Subsurface

Complexity Consists of:

Lithologic Heterogeneity

« Scale of detection vs.
reality

Stratigraphic Geometry

* Real vs. Interpreted
Hydrostratigraphic unit
continuity

Van Etten Creek, Oscoda, Ml



Geologic Complexity: Geometry and Heterogeneity \\

Geometry Heterogeneity

Advection
Diffusion

Diffusion of mass into fine-grained storage
zones can lead to back diffusion and prolonged
remediation time frames

Depositional geometry of HSU’s can significantly impact hydraulic connectivity, well
performance, and/or amendment efficacy and so must be addressed.



Preliminary Relative Flux Transects :
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Growing Interest in

Stratigraphic Analyses and PFAS

Google Scholar Results "Sequence Google Scholar Results Ground Water + TCE or
Stratigraphy" PFOA/PFOS
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(Newell et al.,2020, Remediation (30), 7-26)

» 2013 Battelle Program: “Geology” not found
» 2022 Battelle Program: “Geology” 70X, Stratigraphy 35X



