

20 years using Persulfate in remediating Soil and GW – Do's and Don'ts

Remtech 2023 Banff, AB, Canada

Presented by Jean Paré, P. ENG.

Presentation Summary

- ✓ About us
- ✓ Oxidation Chemistry Fundamental
 - Persulfate Activation Mechanism
 - Targeted Contaminant

$\checkmark\,$ Evolution of Persulfate and Lessons Learned

- Combining In situ soil stabilization with In situ chemical oxidation
- Low solubility Oxidant used as PRB Media
- Combining ISCO and Bioremediation
- ✓ Conclusions Do's and Don'ts

IN ENUIRONMENTALSOLU

Canadian Company founded in 1988

Production and warehouses throughout Canada

- Quebec
- Ontario
- Alberta
- British Columbia

Sectors of activity:

About us

- Industrial and Municipal Potable & Waste Water
- Contaminated Soil and Groundwater
 - Air, Odours and Atmospheric Emissions (Activated Carbon, filtering medias)
 - Process Water & Thermal Exchange Fluids (Glycols)
 - Drilling Fluids (Oil and Gas & Diamond exploration)
 - Aircraft De-icing Fluids

Excellence & Science through proud Suppliers & Partners

ADVANCED OXIDATION TECHNOLOGY (AOT) Since 2005

Typical site remediation technique

- ✓ Dig & Haul
- ✓ Pump & Treat
- ✓ Soil Vapour Extraction under vacuum with or without air/steam injection
- ✓ Chemical Oxidation In Situ/Ex Situ
- ✓ Chemical Reduction In Situ/Ex Situ
- Monitored Natural Attenuation
- ✓Activated Carbon Sorption & Treatment Technology
- ✓ Enhanced Bioremediation
- ✓ Risk Analysis
- ✓ Stabilization/Solidification
- ✓ Soil Washing
- ✓ Phytoremediation
- ✓ Reactive Barriers
- ✓ Thermal degradation/desorption

In Situ Technologies – Key Drivers

✓ Improvement of contaminant removal rate versus natural attenuation

- Remedial objectives Time versus Money
- ✓ Access to the contaminant of concern (underground)

infrastructure, public utilities, building, road, etc.)

✓Polishing step to meet low remedial objectives or Risk-Based Criteria

✓ Sustainable Development Contribution versus remote off-site disposal, environmental footprint, air emission from trucking, etc.)

In Situ / Ex Situ Chemical Oxidation

CANADIAN Z

In Situ Chemical Oxidation (ISCO) commonly refers to remedial technologies that react and destroy organic contaminants primarily using an abiotic oxidative chemical pathway.

In Situ Chemical Oxidation: Introduction

- ✓ Oxidants are introduced or mixed into the contaminated soil and/or groundwater to attack the organic contaminants
- ✓ Typically, ISCO reagents include hydrogen peroxide, ozone, percarbonate, permanganate, and persulfate
- Water is the carrier for the oxidants used in chemical oxidation (except for ozone)
- ✓ **Contaminant solubility** might limit rate of destruction (S-ISCO)
- ✓ Oxidants are non-specific and will react with the targeted contaminants AND with the soil organic and/or mineral soil matrix content Soil Oxidant Demand SOD).
- ✓ Chemical oxidation reactions involve the transfer of electrons and the breaking of chemical bonds
 ✓ If you have enough oxidant present and sufficient time you will push the destruction toward to
 FULL mineralization (CO2, H2O, Cl-) of the contaminant of concern

Conditions for Selecting Chemical Oxidation

cal L tion D ability	Limitation / Disadvantages	Possible Alternative Options	
ly not H st re	High oxidant requirement (\$)	Multiphase Extraction Thermal degradation Soil Washing	
it H : re	High oxidant requirement (\$)	Extraction with air/steam injection Thermal degradation Soil Washing Extraction with air/steam injection Bioremediation	
ood N ons c	Normal considerations		
it could H ily to	Higher cost due to SOD	Bioremediation, Reactive barriers	
	ly t NAI	ly to SOD NAPL: Non-Aqueous Phase	

Carus Haz Rem Assessment Process

(Adapted from R. L. Siegrist et al., "Principles and Practices of In Situ Chemical Oxidation Using Permanganate", p. 202.)

Radical Formation Upon Activation

- Kinetically faster reacting radicals that are:
 - More powerful oxidants (SO₄• and OH•) than persulfate itself
 - Reductants (O₂ •⁻)
 - Nucleophiles (O₂•⁻ and HO₂⁻)

Oxidant	Standard Reduction Potential (V)	Reference
Hydroxyl radical (OH•)	2.59	Siegrist et al.
Sulfate radical (SO₄•⁻)	2.43	Siegrist et al.
Ozone	2.07	Siegrist et al.
Persulfate anion	2.01	Siegrist et al.
Hydrogen Peroxide	1.78	Siegrist et al.
Permanganate	1.68	Siegrist et al.
Chlorine (HOCl)	1.48	CRC (76th Ed)
Oxygen	1.23	CRC (76th Ed)
Oxygen	0.82	Eweis (1998)
Fe (III) reduction	0.77	CRC (76th Ed)
Nitrate reduction	0.36	Eweis (1998)
Sulfate reduction	-0.22	Eweis (1998)
Superoxide (O₂•¯)	-0.33	Siegrist et al.
ZVI	-0.45	CRC (76th Ed)

Persulfate activation methods

Adaptive activation mechanism

Alkaline Activated Persulfate

- Well suited for most applications
- More compatible with carbon steel
- Reductants, oxidants and nucleophiles

• Iron-Chelate Activated Persulfate

- Chlorinated ethenes and hydrocarbons
- Oxidative pathway
- Possibility to use Zero Valent Iron (solid state activator)

• Heat

- Complex sites
- Polishing step after thermal treatment
- Reductants, oxidants and nucleophiles

• Hydrogen Peroxide

- Sites that benefit from vigorous reaction with both hydrogen peroxide and sodium persulfate
- Reductants, oxidants and nucleophiles

• Surface Activation

- Silica Gel matrix
- Could be injected as a slurry

Estimated Activator Usage

Purchase of Klozur persulfate includes with it the grant of a limited license under Peroxychem' S patents covering the use of Klozur persulfate for environmental applications at no additional cost to the buyer

Persulfate Contaminant Degradation Pathways

Oxidative	Either	Reductive
\checkmark	PCE. TCE. DCE and VC	
Petroleum Hydrocarbons	-, -,	Carbon Tetrachloride
MGP Residuals	Chlorobenzenes	1,1,1-Trichloroethane
BTEX	Chlorophenols	Dichloroethanes
	Select Pesticides	
РАПS	Salast Elucrinated Compounds	Select Pesticides
Oxygenates	Select Fluorinated Compounds	Select Energetics
	PCBs	
1,4-Dioxane	Select Energetics	

Activation Method: Iron Chelate/Klozur One

Heat Activation Mechanism

Heat $S_2O_8^{-2}$ + heat \rightarrow 2 SO₄.

Compound with > 90% decomposition treated with persulfate

20 ºC	35 ⁰C	45 °C
Toluene Ethylbenzene Xylene	Benzene Chlorobenzene 1,2-DCE	1,1,1-TCA Chloroform Methylene Chloride
1,1-DCE 1,2-Dichlorobenzene 1,3-Dichlorobeneze 1,2,4-Trichlorobenzene	TCE TCE 1,1-DCA 1,2-DCA	
	Vinyl Chloride Carbon Tetrachloride	

Aqueous solutions - lab data; 72 hour

Advantage:	high oxidation potential with many compound with enough
	energy supply
 Disavantage: 	might be costly in field application

Persulfate Alkaline Activation Mechanism

Persulfate activation methods

ALL IN ONE – SELF ACTIVATING PRODUCT

✓ Klozur CR (Combined Remedy)

 \checkmark 50 % sodium persulfate with 50 % Perme-Ox Ultra (alkaline activation) with enhanced bioremediation

✓ PersulfOx

✓ 90 % sodium persulfate with 10 % Silica Gel (surface activation)

✓ Klozur One

- ✓ 95 % sodium persulfate with 5 % activator package (multiple activation method)
- ✓ <u>Klozur One is the only fully water soluble all-in-one product</u>
 - Source: Peroxychem / Regenesis

Evolution of Persulfate chemistries

Combining In situ soil stabilization with In situ chemical oxidation ISS-ISCO

In Situ Solidification-Stabilization (ISS)

- Contaminant <u>immobilization or mass flux</u> <u>reduction</u> (used for metals and organic leachable species)
- Stabilization Decreases the <u>hydraulic</u> <u>conductivity</u> of soils
- Solidification Compressive soil strength influenced by type and dose of reagents
- Applied via soil mixing/blending

ISS is commonly used to <u>immobilize</u> highly contaminated petroleum hydrocarbon sites (MGP sites, etc)

In Situ Chemical Oxidation (ISCO)

- In situ chemical oxidation (ISCO)
- Powerful destructive remedial technology
- Applied via injection, recirculation, backfill amendment, and soil mixing
- Alkaline activated persulfate
 - Thousands of successful applications
 - Oxidative and reductive destructive pathways
 - Complex comingled plumes
 - Minimized corrosivity on carbon steel equipment & underground infrastructure
 - Little to no heat or gas evolution

ISCO works by <u>establishing</u> <u>contact</u> between a <u>sufficient</u> <u>mass of activated persulfate</u> and the mass of contaminant

ISCO applied via Soil Mixing

ISCO with Soil Mixing

- Establishes contact
- More rapid treatment
- Homogenizes soil and contaminant
 - Minimizes impact of heterogeneity
 - Low permeable soil

ISS-ISCO Reagent Ranges

ISCO and ISS reagent doses can be varied to achieve a variety of remedial goals

 Stabilization
 Remedial Goals
 Destruction

Remedial Objective - Where to Use ISS and ISCO

Source zones

- Very highly contaminated sites (NAPL)
 - Petroleum hydrocarbon (MGP, etc.)
 - cVOC

• To create hydraulic barriers

- Lower hydraulic conductivities observed in ISS with ISCO rather than ISS alone
- Soil mixing application strategy
- Enhanced Site soil characteristics
- Balance contaminant destruction, solidification, and post application

ISS & ISS-ISCO - Deployment Options Downgradient Circumferential Upgradient Groundwater Groundwater Groundwater extraction wells Groundwater flow ۲ Downgradient flow Groundwater extraction wells \odot . groundwater Contaminated Contaminated flow extraction wells \odot zone \odot zone Circumferential **≪**−Down-gradient Contaminated 0 barrier zone barrier \odot \odot 0 Contaminant Upgradient 🗩 \odot plume barrier 0 Plan view Plan view Plan view Groundwater 🎤 Barrier SUS extraction Groundwater Groundwater Down-gradient Groundwater extraction Barrier extraction vertical barrier flow 12.67 Contamination zone Contaminated Contaminated zone ¥ X zone Groundwater Captured flow contaminant 1 plume Confining layer Confining layer Confining layer Section Section Section

Source Hazardous Waste Management: Second Edition

TECHNOLOGY EVOLUTION - ISS and ISCO

ISCO-ISS Bolzano, Italy Courtesy of Ladurner

Technological Synergies of ISCO and ISS

Combining ISCO and ISS can make each technology better

ISCO benefits:

Alkalinity from ISS reagents can be used to activate Klozur SP
 Soils can have their geotechnical characteristics enhanced with low amounts of ISS reagents

ISS benefits:

- 3. Contaminant destruction by ISCO can enhance stabilization from ISS Helps the cementitious process Less contaminant to immobilize = lower leachate concentrations
 - Loss overall mass of reagents results in loss excess coil genera
- 4. Less overall mass of reagents results in less excess soil generation
- 5. Better balance between hydraulic conductivity and compressive soil strength

Contaminant destruction and immobilization in single soil mixing application (combined remedy)

6. Saving project time and overall cost

Low solubility Oxidant used as PRB Media

Solubility Limited Release Static System

Reactors at 20°C Klozur KP Solubility = 47 g/L

Reactors at 20°C Klozur SP Solubility = 570 g/L

Solubility Limited Release - Dynamic System

• Column Study:

- ▶12 inch columns
 - 6 inch section of 50:50 blend of sand and either Klozur KP or Klozur SP
 - Targeting 300 g of oxidant
 - 3 inch sand above and below
- ➢Four columns
 - 2 °C :
 - SP
 - KP
 - 20 °C
 - SP
 - KP

Column Study (20°C) Effluent Persulfate Concentration

- Dissolution of Persulfate
 > 20-25 ∘C
- Klozur SP
 Peak at theoretical maximum
- Klozur KP
 Sustained at theoretical maximum

Conceptual Permeable Reactive Barrier

- Permeable Reactive Barrier (PRB)
- Conceptual Design of Gate
 50 ft wide, 10 ft high, <u>5 ft deep</u>
 ~50% w/w KP
 > 150,000 lbs KP Groundwater Flow

Conceptual "Ideal" Persistence of the Extended Release KP

	Conceptual	Klozur K	P Persiste	nce (mon	ths)
Temp (°C)		0	10	20	25
Solubility (g/L)		17	29	47	59
	5	679	398	246	196
ter /yr)	10	339	199	123	98
dwa v (ft	20	170	100	61	49
oune	50	68	40	25	20
Gre Velo	100	34	20	12	10
	500	7	4	2	2

KP PRB

Does not consider potential "site" factors

Activator PRB

Case Study

Klozur[®] KP In Situ Chemical Oxidation Reactive Barrier for the treatment of 1,4-Dioxane

Location: Confidential Former Industrial location in New York State Lead Consultant: AECOM Technical Support: Evonik Contaminants:1,4-Dioxane, 1,1,1-TCA, 1,1-DCA, 1,2-DCA, and 1,1-DCEOxidant:Klozur® KP w alkaline activationStrategy:In Situ Applications of Klozur KP

- Slurry injection

Pilot scale KLOZUR KP PRB Results

- Data from (MW-1) demonstrated a **99.8% reduction** for all contaminants and treatment of **1,4-dioxane to non-detect**.
- **Residual persulfate and alkaline conditions persisted for up to eight** months after the pilot test application within the PRB. This indicated that the geochemical conditions for alkaline activated persulfate were maintained at the PRB for longer than the designed 6 month time-frame.
- Low levels of persulfate were observed downgradient from the PRB, however the pH was unchanged at both downgradient locations. This indicated that the alkaline conditions generated to activate the persulfate within the PRB transect were not sustained downgradient of the PRB.
- Despite the loss of alkaline conditions, the contaminants of concern were reduced by over 80 percent at the monitoring location 10 ft down gradient and by over 60 percent

	Klozur Persulfate pH (g/L)	Contaminant Concentrations (µg/L)					
Event		рН	DCA	DCE	1,4-Dioxane	VOCs*	Reduction VOCs (%)
MW-1 (3 ft downgradient of PRB transect)							
Baseline	NA	6.9	21	40	30	115	
3 month	7.2	12	0.2	ND	ND	0.2	99.8%
6 month	NA	NA	0.2	ND	ND	0.2	99.8%
8 month	14.2	12	NA	NA	NA	NA	NA
MW-2 (10 ft downgradient of PRB transect)							
Baseline	NA	7.2	44	72	55	184	
3 month	3	6	10	11	ND	26	86%
6 month	NA	NA	16	ND	16	34	82%
8 month	2.5	6.8	NA	NA	NA	NA	NA
MW-3 (25 ft downgradient of PRB transect)							
Baseline	NA	7.2	89	270	200	610	
3 month	NA	NA	46	82	69	216	65%
6 month	NA	NA	63	30	110	230	62%
8 month	8	6.5	NA	NA	NA	NA	NA

* VOCs listed. Not including acetone

ND: Non-detect, NA: Not analysed

Combining ISCO and Bio

The Back Diffusion Issue

Back Diffusion Visualation

Source: SERDP – Project ERP 1740

Back Diffusion Visualisation

Source – Colorado State University

In Situ Chemical Oxidation and Bioremediation in the Complex Geologies of the Lower Mainland of British Columbia

Location: 150 in Vancouver, BC from 2015 to 2021 Lead Consultant: Ventus Technical Support: Chemco

Contaminants: Oxidant: Strategy:

- Petroleum Hydrocarbons
- Klozur[®] CR
 - In Situ Applications of Klozur CR
 - Soil mixing
 - Filled via boreholes
 - Excavation backfill amendment

Case Study - Treatment of EPH C10-19 Contaminated Soils

- Given the yearly variation in water table depth there is often a small amount of contaminated soils that are above the water table.
- Holes are drilled into the excavation area for injection after mixing or Klozur[®] CR can be mixed and poured directly into an open excavation.

Case Study - Treatment of EPH C10-19 Contaminated Soils

- Thick slurries of Klozur[®] CR applied:
 - Into tightly spaced boreholes
 - Base of excavation of former USTs
 - Via Jetting

- In 8 to 9 weeks EPH (C10-C19) soil concentrations decreased:
 - Excavation base: 4010 ppm to 108 ppm
 - Sidewall: 4820 ppm to 112 ppm
- Dig and dump remediation would have required destruction of the deck (worth \$18,000 CAD), making ISCO the safest easiest and cheapest approach to remediation. Remediation Cost was about \$10,000.

Case Study - Treatment of EPH C10-19 Contaminated Soils

- Over 180 Locations treated with Klozur[®] CR from 2015 to 2022
- 148 of the sites have been successfully closed
- Klozur[®] CR used:
 - In conjunction with excavation of the worst of the material
 - Treat more lightly contaminated soils

Conclusions Do's and Don'ts

Do's

- Understand your site and your contaminant
- Perform bench-scale treatability studies to test one or more amendments using site-specific soils and groundwater BEFORE getting to the field
- Source zone treatment possible In Situ Soil mixing
- Reactive Oxidative PRB now possible
- Great for GW contamination

 \checkmark

- Aqueous Solution Injection or Direct Push / Fracking emplacement for slurry
- Open excavation = opportunity
- Post injection monitoring is performed to evaluate the longterm effectiveness of the remedy, identify the need for additional application of amendments, assess progress toward achieving remedial goals and remedial action objectives, and determine if rebound is occurring

Don'ts

- 10 000 mg/kg and above / 10 000 ppb in GW = questions yourself
- ✓ Have proper Health and Safety plan in place
- Be aware of the amendment reactivity with on site material
- ✓ Check the material BEFORE accepting delivery
- Fast groundwater flow velocity might limit the effectiveness of soluble amendments due to dilution / amendment movement
- Long term & extended release treatment amendments (years rather than months) must be favored to deal with back diffusion for the contaminant

Thank you for your attention !! Questions ?!?

Ottawa EnviroWorkshops November 2022

Contact info: Jean Paré, P. ENG. M: 418-953-3480 // jean.pare@chemco-inc.com

T: 800-575-5422

