

Regenerable IX Resin for PFAS Treatment -4+ Years Later ... What We've Learned...

RemTech 2023 October 11, 2023 **Paul Newman, M.Sc.** *Market Sector Lead - Defence*

David Kempisty, Ph.D., P.E. *Director, Emerging Contaminants*

The PFAS Challenge

- PFAS substances are everywhere
- Few treatment case studies available

A Proven Solution: Regenerable IX

- Effective and sustainable
- Minimizes waste
- Scalable
- Compounding cost savings over time
- Future-proof

Agenda

- Regenerable IX process overview
- Case study RAAF Base
 - Treatment effectiveness
 - Resin capacity trends
 - Waste generated
 - Leveraging data to optimize performance
- What we've learned is Regenerable IX a silver bullet?

Regenerable IX Process

Water Treatment

Regenerable IX Process

Resin Regeneration

Stage 1: Pre-treatment

Stage 2: REIX Treatment

Stage 3: Resin Regeneration

© 2021 ECT2 Proprietary and Confidential. 8

Regenerable IX Hub-and-Spoke Model

Regenerable IX Case Study

RAAF Base, AU

- Legacy AFFF-impacted groundwater
- 12.6 L/s (200 gpm) treatment since 2019
- Influent: Σ PFAS up to 60 µg/L; mean: 14 µg/L
- Treatment criteria: Australian HBGVs
 - PFOS + PFHxS 0.07 µg/L
 - PFOA 0.56 μg/L
- 26 regenerations
- 19+ kg of PFAS removed

Influent Concentrations to Water Treatment System

High influent concentrations

Co

Consider regenerable resin

Influent Concentrations to REIX System

Pre-treatment removes some PFAS – goal is to protect the resin

Effluent from Lead IX Vessel

Concentrations < 200 ppt after first lead RIEX vessel

Effluent from Lag Vessel

Consistent: 100% compliance with treatment objective; nearly non-detect in all sampling events

Consistent Performance

- Volume water treated
- PFAS removal
 - Pre-treatment media
 - Hydrogeological areas of greater concentration
 - Seasonal variation

Regeneration Efficiency

- No obvious media degradation
- No increased regeneration frequency
- Consistent PFAS mass recovered

Criteria	5–Cycle Average	5-Cycle Standard Deviation
Treatment Days	245	56
Volume Water Treated (ML)	128	26
PFAS Removed (g)	330	112
PFAS Recovered (g)	369	173
Mass Balance (removed-recovered)	-39	77

Optimization Efforts Continue

New media evaluation

2.7x capacity with RePureNext; >4x capacity for HBGV PFAS of interest

Investigation efforts

Microplastics

Are we putting microplastics into the environment by with technology involving large vessels of plastic media?

FIG. 2 Water Sampling Apparatus for Pressurized Systems

ASTM D8332-20

Standard Practice for Collection of Water Samples with High, Medium, or Low Suspended Solids for Identification and Quantification of Microplastic Particles and Fibers

Investigation efforts

Microplastics

Criteria	AU (Site #1)	US (Site #2 / Lab #1)	US (Site #2 / Lab #2)
Microplastic count (microplastics/L)	27 / 34	0.6 / 0	1.1 / 1.0
Sample collected	Grab	ASTM 8332-20	
Analysis performed	Microscopy/LDIR	PLM/Raman	Microscopy/LDIR
Plastics identified	No polystyrenic / PMMA		
Resin sample match	No	N/A	No

Findings <u>do not</u> suggest MP contribution to the environment from two IEX treatment locations

What We've Accomplished

- Higher concentrations; longer treatment times; bundled locations
- Ancillary Benefits
 - ESG metrics, reduced future lability, waste minimization

What We've Learned

PFAS

Achievable Volume Reduction of

Concentrate

- Consistently works (PFAS removal and resin regeneration)
- Not a silver bullet
- Accurate design parameters
- Optimization continues
- Future-proof
 - Tightening regulations
 - Off-ramp for destruction

Ability to treat all PFAS/ Preparedness for evolving regulations

The Future of Environmental Solutions

Paul Newman, M.Sc.

Market Sector Lead – Defence

407.947.4060 panewman@ect2.com

David Kempisty, Ph.D., P.E. Director, Emerging Contaminants

720.891.0997 dakempisty@ect2.com