
Navigating Complexity: A Case Study on the Execution of a Sampling Program Addressing Persistent Organic Pollutants Desiree Hui, Brent Saulnier





## AltaLink

- AltaLink owns and operates 60% of Alberta's electricity transmission system
  - 13000 km of Transmission Lines and 300 substations



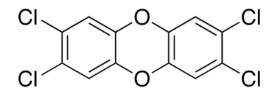




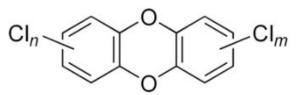


#### **Overview**

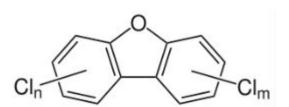
- Dioxins and Furans background
  - What are they?
  - Why are they important?
  - US EPA Method 1613
- AltaLink Sampling Program
  - History
  - Methodology
- Analysis
  - Method Optimization
  - Benefits & Advantages






## **Dioxins and Furans**

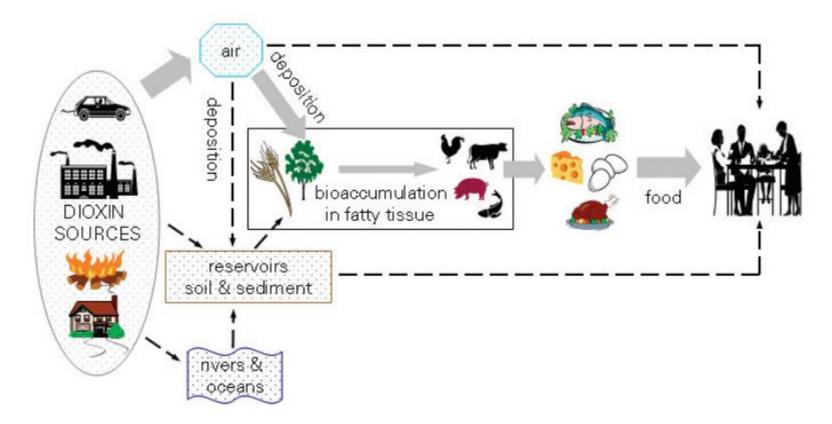

- Dioxins and furans are a group of compounds (congeners) that share similar chemical and physical properties. They are the by-products of various chemical processes such as:
  - Smelting
  - PVC (polyvinylchloride) production
  - Bleaching processes for pulp and paper
  - Industrial burning and medical incinerators
  - Synthesis of chlorinated compounds
  - Wood preservative



2378-tetrachlorodibenzo-p-dioxin



Polychlorinated dibenzo-*p*-dioxins

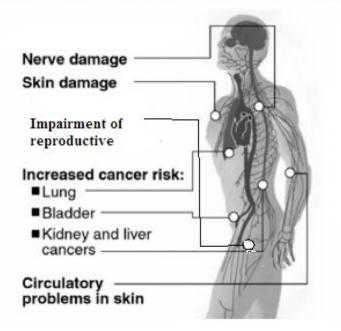



Polychlorinated dibenzofurans





## **Dioxin and Furans in the Ecosystem**








## Why are they important?

#### EFFECTS OF DIOXINS AND FURANS



- Persistent organic pollutants have been known to accumulate in the environment.
- They can cause adverse health effects such as cancer in animals, suppression of the immune system, adverse reproductive effects and endocrine disrupting effects.
- Guidelines and regulations have been put in place in an effort to reduce and control levels found in the environment.
- 2378-TCDD has been labeled as the most toxic of the EPA
  Method 1613 congeners.







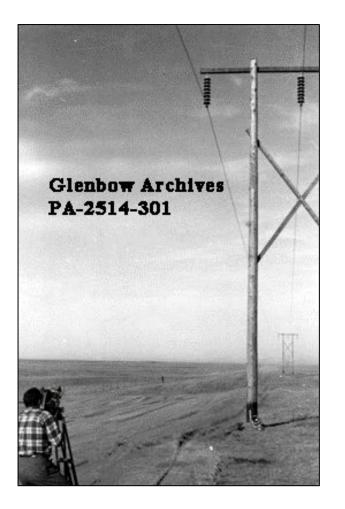
## What are the TEQ and TEF?

|                               | WHO 2005<br>TEF | WHO 1998<br>TEF | NATO 1988<br>TEF |  |  |  |
|-------------------------------|-----------------|-----------------|------------------|--|--|--|
| Chlorinated dibenzo-p-dioxins |                 |                 |                  |  |  |  |
| 2,3,7,8-Tetra CDD 1 1 1       |                 |                 |                  |  |  |  |
| 1,2,3,7,8-Penta CDD           | 1               | 1               | 0.5              |  |  |  |
| 1,2,3,4,7,8-Hexa CDD          | 0.1             | 0.1             | 0.1              |  |  |  |
| 1,2,3,6,7,8-Hexa CDD          | 0.1             | 0.1             | 0.1              |  |  |  |
| 1,2,3,7,8,9-Hexa CDD          | 0.1             | 0.1             | 0.1              |  |  |  |
| 1,2,3,4,6,7,8-Hepta CDD       | 0.01            | 0.01            | 0.01             |  |  |  |
| Octa CDD                      | 0.0003          | 0.0001          | 0.001            |  |  |  |
| Chlorinated dibenzofurans     |                 |                 |                  |  |  |  |
| 2,3,7,8-Tetra CDF             | 0.1             | 0.1             | 0.1              |  |  |  |
| 1,2,3,7,8-Penta CDF           | 0.03            | 0.05            | 0.05             |  |  |  |
| 2,3,4,7,8-Penta CDF           | 0.3             | 0.5             | 0.5              |  |  |  |
| 1,2,3,4,7,8-Hexa CDF          | 0.1             | 0.1             | 0.1              |  |  |  |
| 1,2,3,6,7,8-Hexa CDF          | 0.1             | 0.1             | 0.1              |  |  |  |
| 2,3,4,6,7,8-Hexa CDF          | 0.1             | 0.1             | 0.1              |  |  |  |
| 1,2,3,4,7,8,9-Hexa CDF        | 0.1             | 0.1             | 0.1              |  |  |  |
| 1,2,3,4,6,7,8-Hepta CDF       | 0.01            | 0.01            | 0.01             |  |  |  |
| 1,2,3,4,7,8,9-Hepta CDF       | 0.01            | 0.01            | 0.01             |  |  |  |
| Octa CDF                      | 0.0003          | 0.0001          | 0.001            |  |  |  |

- What is the Toxic Equivalency Factor (TEF)?
  - Describes the toxicity in comparison to the most toxic dioxin 2378-TCDD.
  - Each concentration is calculated against a specified TEF. International and WHO TEFs can be reported as requested.
- What is the Toxicity Equivalency (TEQ) value?
  - The sum of the toxicity of each Dioxin like compound against each TEF providing an exposure concentration

$$TEQ = \sum_{i=1}^{n} C_i \ x \ TEF_i$$

• TEQ's are often used in risk assessments, managing contaminated sites, and by toxicologists.






## **Regulated Surface Operation**

• Specified Land

"Transmission lines on both private and public land must be reclaimed and obtain a Reclamation Certificate for regulatory closure"








## History

- Investigations 2007
- Risk Assessment 2010
- RemTech 2010
- Reclamation Guideline 2019
- Remediation Guideline ????







## **Media Attention**



Soil tests confirm hazards to human health at former Edmonton Domtar site: province

The tests found 183 samples have "levels of contamination that exceed human health guidelines for dioxins and furans," the province said Thursday.

HEALTH | MAR 7, 2019







# D/F and PCP Utility Poles

- Does AltaLink have D/Fs?
- 6.8 Million PCP Poles
- D/F Emissions from PCP Poles
  - 1% of Total Air Emissions
  - 47% of Total Soil Emissions
- Emissions to soils poorly studied







## **Early Investigation & Challenges**

- Hap Hazard Sampling Methods
- Expensive and Slow Analytical TAT
- Outdated soil quality guidelines (CCME 2002)
  - 1980-90s EDI & TDI data
  - 4 ng TEQ/kg = Background







# Path Forward – Ongoing Innovative Approach

- Working Group Re-established
- T-Line D/F Risk Assessment
- T-lines are being decommissioned with or without guidelines
- Streamlined Analytical



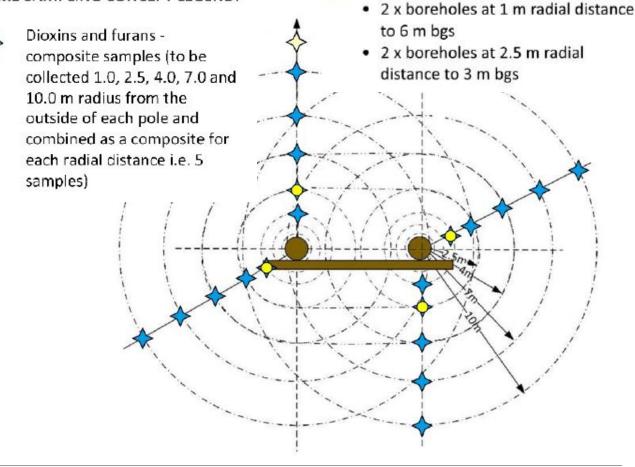




herta \*

ATCO

\*This innovative approach has not received regulatory acceptance at this time.



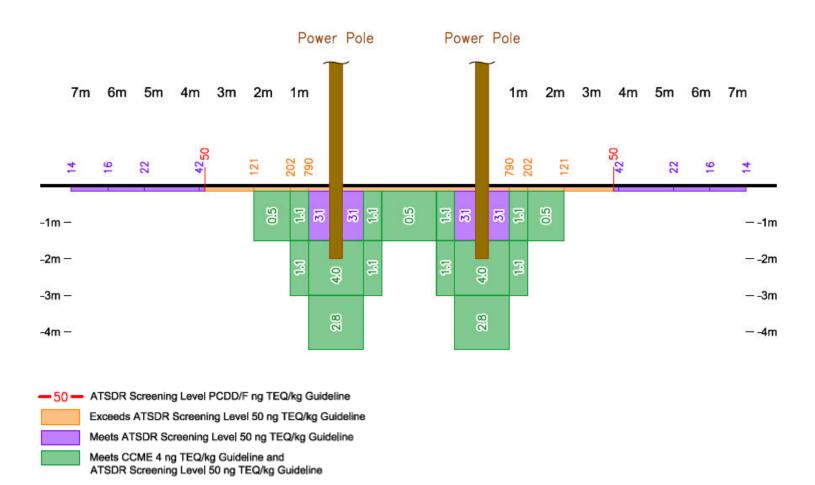



## **Assessment Methodology**

- Best way to sample for D/F?
- Composite Sampling?
- 2023 Revised Sampling Strategy
  - 100+ poles to be assessed
  - Composite sampling in rings
- Delineation achieved

#### H-FRAME SAMPLING CONCEPT LEGEND:








Discrete PCP, PAH, PCDD/F Sampling:

## **Preliminary Results**

A GAT Laboratories 🌞



| Distance From<br>Pole Centre (m) | Calculated Statistic<br>PCDD/F (ng TEQ/kg) |  |
|----------------------------------|--------------------------------------------|--|
| Fole Centre (m)                  | 95% CL                                     |  |
| 0.75                             | 790                                        |  |
| 1.25                             | 202                                        |  |
| 2.25                             | 121                                        |  |
| 3.75                             | 42                                         |  |
| 5.25                             | 22                                         |  |
| 6.25                             | 16                                         |  |
| 7,25                             | 14                                         |  |

| Depth Range   | Marriado          | ng TEQ/kg at Distance from Pole (m) |      |          |  |  |
|---------------|-------------------|-------------------------------------|------|----------|--|--|
|               | Mean or CL        | 0,75                                | 1,25 | .25 2,25 |  |  |
| 0 to 0.15 m   | 95% CL            | Same as plan view concentrations    |      |          |  |  |
| 0.15 to 1.5 m | 95% CL            | 31                                  | 1.1  | 0.50     |  |  |
| 1.5 to 3.0 m  | Mean <sup>1</sup> | 4.0                                 | 1.1  |          |  |  |
| 3.0 to 4.5 m  | Mean <sup>1</sup> | 2.8                                 |      |          |  |  |

1- Insufficient data for 95% CL



## EPA Method 1613

- Traditional method for the analysis of Dioxins and Furans by Isotope Dilution High Resolution Gas Chromatography Mass Spectrometry (HRGC/HRMS)
- Seventeen of the most toxic congeners are analyzed using the 1613 Method which recognizes there are advances in new and emerging technology that can improve analysis
- Long extraction time and multiple cleanup steps







## **Method Optimization**

• TAT comparison for Dioxin and Furans in soil: 20 sample batch + QC

|                                              | Traditional EPA<br>Method 1613 | Optimized<br>method |
|----------------------------------------------|--------------------------------|---------------------|
| Extraction                                   | 18 - 24 hours                  | 0.5 hours           |
| Cleanup and<br>preparation for<br>instrument | 5+ days                        | 1 - 2 days          |
| Total in lab                                 | 6+ days                        | 2 days              |





## **Result Comparison – problematic soils**

Samples run both by Montreal and Calgary locations for comparison

Even against the most troubling samples good repeatability was observed using the optimized method!

|               | Traditional EPA<br>1613 method | Optimized<br>Method     | Traditional EPA<br>1613 method | Optimized<br>Method     | Traditional EPA<br>1613 method | Optimized<br>Method     |
|---------------|--------------------------------|-------------------------|--------------------------------|-------------------------|--------------------------------|-------------------------|
| CDD/CDF       | HRMS<br>Soil Sample A          | GCMSMS<br>Soil Sample A | HRMS<br>Soil Sample B          | GCMSMS<br>Soil Sample B | HRMS<br>Soil Sample C          | GCMSMS<br>Soil Sample C |
|               | ng/kg                          | ng/kg                   | ng/kg                          | ng/kg                   | ng/kg                          | ng/kg                   |
| 2378-TCDD     | 0.3                            | <1                      | 0.8                            | 1                       | 0.1                            | <1                      |
| 12378-PeCDD   | 9                              | 7                       | 17                             | 20                      | 1                              | <2                      |
| 123478-HxCDD  | 26                             | 18                      | 52                             | 63                      | 3                              | 3                       |
| 123678-HxCDD  | 149                            | 142                     | 382                            | 490                     | 9                              | 10                      |
| 123789-HxCDD  | 55                             | 39                      | 108                            | 130                     | 6                              | 6                       |
| 1234678-HpCDD | 5710                           | 4660                    | 12900                          | 14100                   | 314                            | 467                     |
| OCDD          | 57400                          | 50500                   | 126000                         | 131000                  | 2330                           | 3250                    |
| 2378-TCDF     | 0.3                            | <1                      | 0.4                            | <1                      | 0.1                            | <1                      |
| 12378-PeCDF   | <0.1                           | <2                      | <0.2                           | 3                       | 0                              | <2                      |
| 23478-PeCDF   | 1                              | <3                      | 2                              | 4                       | 0                              | <3                      |
| 123478-HxCDF  | 22                             | 22                      | 77                             | 98                      | 2                              | <3                      |
| 123678-HxCDF  | 15                             | 10                      | 29                             | 37                      | 2                              | <3                      |
| 234678-HxCDF  | 33                             | 23                      | 70                             | 86                      | 3                              | <3                      |
| 123789-HxCDF  | 4                              | 4                       | 19                             | 25                      | 0                              | <3                      |
| 1234678-HpCDF | 1220                           | 1060                    | 2860                           | 3420                    | 77                             | 72                      |
| 1234789-HpCDF | 82                             | 80                      | 214                            | 273                     | 5                              | 5                       |
| OCDF          | 6110                           | 5930                    | 11300                          | 10900                   | 194                            | 236                     |





#### **Result Comparison – wet soil samples**

The optimized method still came out ahead with these difficult samples

Good repeatability and excellent surrogate recoveries continue to be produced!

|                   | Sample D<br>e 75    |                   | Sample E<br>68      |                   | Sample F            |                   |
|-------------------|---------------------|-------------------|---------------------|-------------------|---------------------|-------------------|
| % moisture        |                     |                   |                     |                   | 6                   | 6                 |
| Method            | Traditional<br>1613 | Optimized<br>AGAT | Traditional<br>1613 | Optimized<br>AGAT | Traditional<br>1613 | Optimized<br>AGAT |
| 2378-TCDD         | <0.1                | <0.1              | <0.1                | <0.1              | <0.1                | <0.1              |
| 12378-PeCDD       | <0.1                | <0.1              | <0.1                | <0.1              | 0.3                 | 0.3               |
| 123478-HxCDD      | <0.1                | <0.1              | <0.1                | <0.1              | 0.5                 | 0.5               |
| 123678-HxCDD      | <0.1                | <0.1              | 0.1                 | <0.1              | 0.9                 | 1                 |
| 123789-HxCDD      | <0.1                | <0.1              | 0.2                 | <0.1              | 1                   | 1                 |
| 1234678-HpCDD     | 1.4                 | 1.5               | 2.7                 | 2.8               | 38                  | 47                |
| OCDD              | 12                  | 14                | 18                  | 22                | 523                 | 716               |
| 2378-TCDF         | <0.1                | <0.1              | <0.1                | <0.1              | <0.1                | <0.1              |
| 12378-PeCDF       | <0.1                | <0.1              | <0.1                | <0.1              | <0.1                | 0.1               |
| 23478-PeCDF       | <0.1                | <0.1              | <0.1                | <0.1              | <0.1                | <0.1              |
| 123478-HxCDF      | <0.1                | <0.1              | <0.1                | <0.1              | 0.2                 | 0.2               |
| 123678-HxCDF      | <0.1                | <0.1              | <0.1                | <0.1              | 0.1                 | 0.2               |
| 234678-HxCDF      | <0.1                | <0.1              | <0.1                | <0.1              | 0.3                 | 0.2               |
| 123789-HxCDF      | <0.1                | <0.1              | <0.1                | <0.1              | <0.1                | <0.1              |
| 1234678-HpCDF     | 0.5                 | 0.5               | 0.6                 | 0.7               | 5                   | 6                 |
| 1234789-HpCDF     | <0.1                | <0.1              | <0.1                | <0.1              | 0.5                 | 0.7               |
| OCDF              | 0.8                 | 1.0               | 1                   | 1                 | 29                  | 41                |
| 13C-2378-TCDF     | 41                  | 88                | 43                  | 94                | 74                  | 93                |
| 13C-12378-PeCDF   | 54                  | 91                | 58                  | 95                | 81                  | 95                |
| 13C-23478-PeCDF   | 57                  | 95                | 62                  | 101               | 82                  | 99                |
| 13C-123478-HxCDF  | 62                  | 98                | 68                  | 103               | 81                  | 96                |
| 13C-123678-HxCDF  | 63                  | 100               | 69                  | 106               | 80                  | 97                |
| 13C-234678-HxCDF  | 65                  | 101               | 69                  | 106               | 78                  | 105               |
| 13C-123789-HxCDF  | 65                  | 95                | 72                  | 100               | 82                  | 99                |
| 13C-1234678-HpCDF | 62                  | 98                | 67                  | 104               | 75                  | 97                |
| 13C-1234789-HpCDF | 67                  | 97                | 71                  | 104               | 80                  | 103               |
| 13C-2378-TCDD     | 44                  | 93                | 47                  | 100               | 79                  | 98                |
| 13C-12378-PeCDD   | 57                  | 96                | 63                  | 101               | 82                  | 100               |
| 13C-123478-HxCDD  | 65                  | 101               | 71                  | 106               | 82                  | 103               |
| 13C-123678-HxCDD  | 67                  | 104               | 73                  | 111               | 83                  | 106               |
| 13C-1234678-HpCDD | 68                  | 103               | 71                  | 110               | 80                  | 108               |
| 13C-OCDD          | 63                  | 103               | 62                  | 115               | 73                  | 112               |





#### **Benefits and Advantages of Our Combined Approach**

- 1. Ability to create a **improved analytical method** that optimized turnaround times while still providing consistent and accurate results.
- 2. Program involved multiple stakeholders and a substantial amount of data.

✓ **Reduced turnaround times** provided the ability to make quick decisions.

- 3. Absence of specific **regulatory guidelines** allowed us freedom to tailor the program strategies and methodologies.
- 4. **Streamlined communication** created efficiencies for all parties such as timely responses to unforeseen challenges with the site program.
- 5. Set **new path forward**, to again develop a powerline-specific assessment and remediation criteria for D/Fs.







Brent Saulnier Brent.Saulnier@altalink.ca

Desiree Hui <u>dhui@agatlabs.com</u>



