

Saturation Percentage and Texture Correlations

and

SST Technical Manual

Greg Huber, M.Sc., P.Eng., PMP Anthony Knafla, M.Sc., P.Biol, DABT

RemTech 2023 – PTAC Remediation Reclamation Session October 11, 2023

Acknowledgements

- Petroleum Technology Alliance of Canada (PTAC)
- Technical Champions:
 - Linda Eastcott (Imperial Oil)
 - Shawn Glessing (Cenovus)

Texture Correlations SST Technical Manual

Other acknowledgements later in presentation...

Presentation Overview

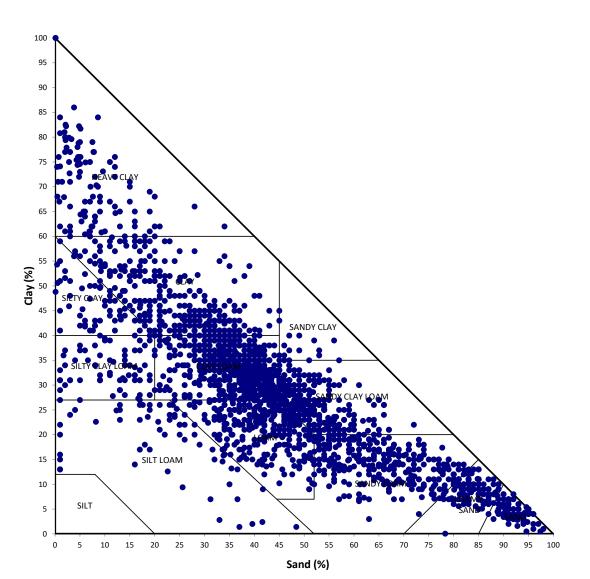
- Saturation Percentage and Texture Correlations
 - Overview
 - High level data review
 - Correlation examples
 - Statistical relationships
- SST Technical Manual
 - Overview
 - Example topics
 - Chloride transport progression
 - Sodium transport
 - Effect of water table depth on upward migration
- SST Courses and Frequently Asked Questions (FAQ)

<u>Saturation Percentage and</u> <u>Texture Correlations</u>

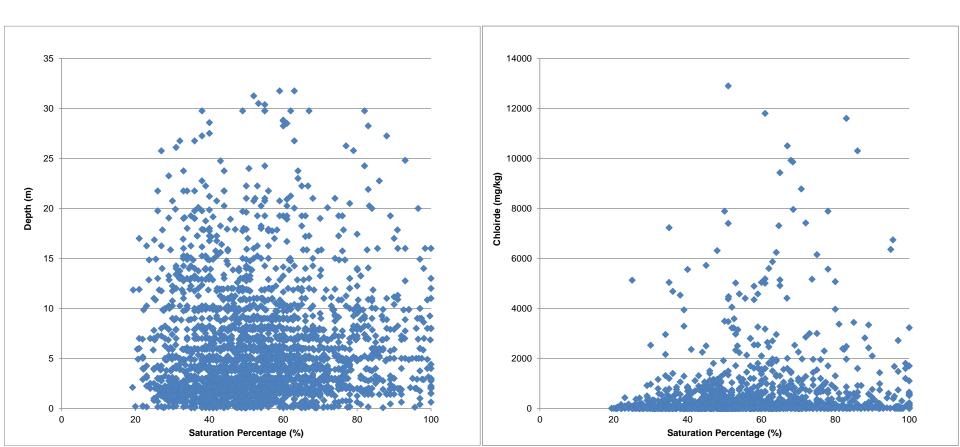
Overview

- Soil texture an extremely important aspect of a Site CSM
 Belowert to both vertical and lateral transport
 - Relevant to both vertical and lateral transport
- SST Version 2.5.3 and earlier were primarily based on hydrometer data (% sand, silt, clay) for overall texture
 Clay content compared to 18% for overall texture
- Version 3.0 harmonized with Tier 1 guidelines, and defines overall texture via sieve data (% retained on 200 mesh)

Hydrometer data still required for SAR/sodium assessments

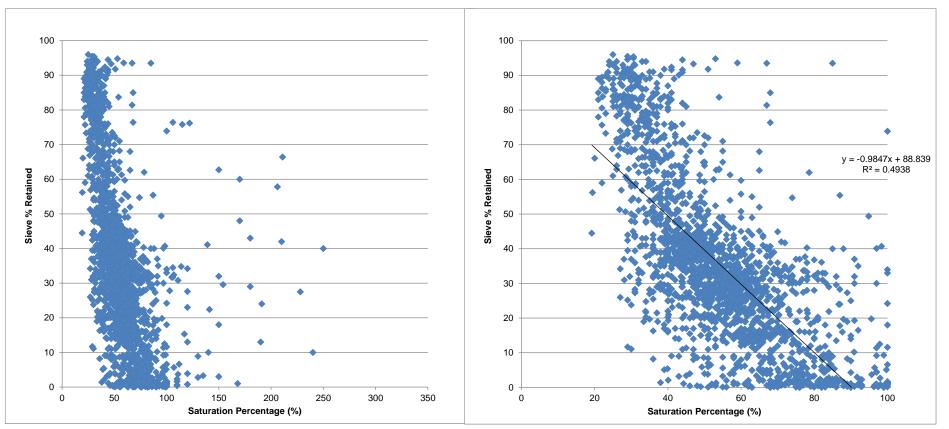

- Both types of texture data often have limited datasets
 - Useful to supplement via other methods (eg, saturation percentage)
- Saturation percentage a useful proxy for soil texture
 - Initial correlations with clay content studied in 2014 PTAC project
 - Further expanded here, with additional content on sieve data

High Level Data Review

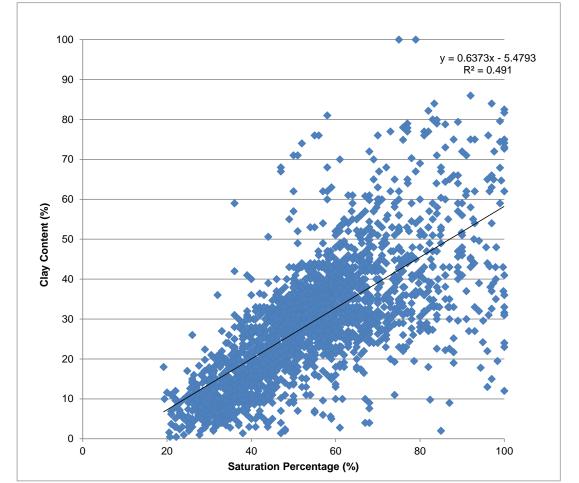

- Data reviewed and compiled from >200 sites
 - Primarily Alberta, also Saskatchewan and Manitoba
- Approx 2855 datapoints with both saturation percentage data and either hydrometer or sieve data
 - 2570 datapoints from Alberta
 - 210 datapoints from Saskatchewan
 - 75 datapoints from Manitoba
- In Alberta, broad spatial coverage
 - W4M to W6M and Townships 1-124
- The ~2855 sat % datapoints correspond to:
 - Approx 2000 sieve datapoints
 - Approx 2300 hydrometer datapoints

Range of Hydrometer data

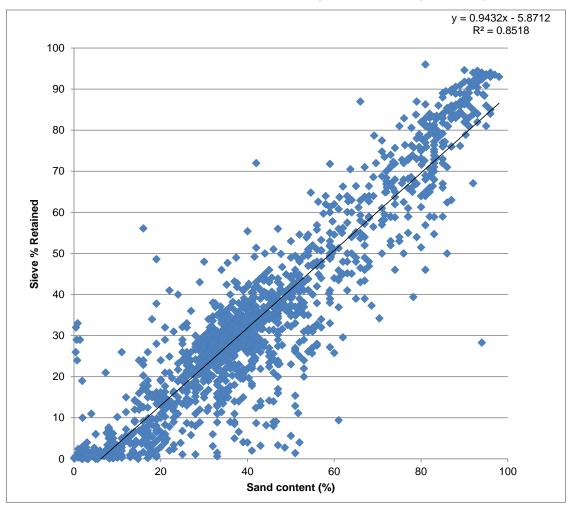
• All soil types represented, with exception of pure silt



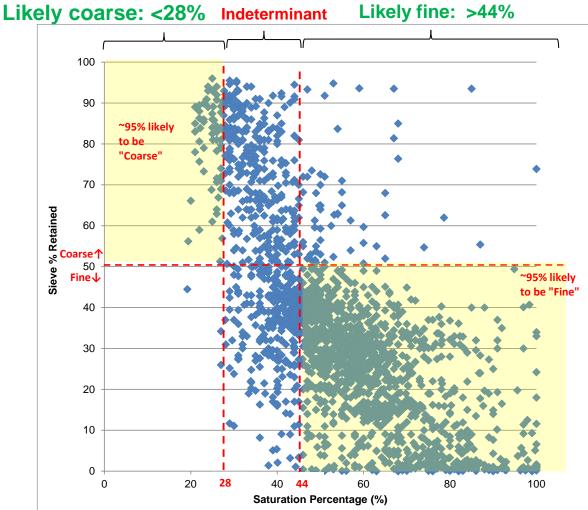
- Depth and salinity effects
- Data uniformly distributed by depth, no clear influence
- Data uniformly distributed by chloride, no clear influence
 - Also no clear trend with SAR
 - Indicates no need to filter by depth or impact status



Sieve data (% retained) vs Saturation percentage


- Sat% >100% frequently indicate organic soils, poor correlation with texture data
- Sat % values >100% excluded in graph on right
- Definite trend of higher % retained with lower sat %
 - Indicates coarser soils
 - R² value approx 0.49

- <u>Clay content vs Saturation percentage</u>
- Trend of higher saturation percentage with higher clay content
 - Excludes sat % values >100%, similar R² value as for sieve data
 - Similar shape to regression from 2014, but with larger dataset

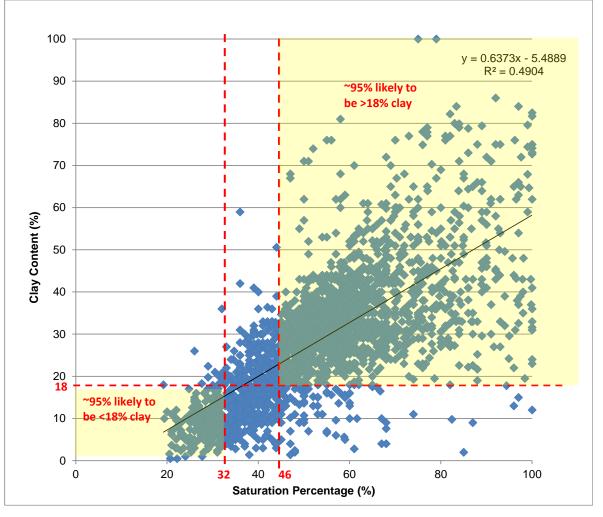

- Sieve data (% retained) vs Sand content
- "Sand" by hydrometer is >50 um, whereas % retained (sieve) is >75 um
- Strong correlation between the two (R²=0.85) despite the different size

11

Statistical Relationships

- Sieve data (% retained) vs Saturation Percentage
- Based on preliminary analysis, can assign ranges for saturation percentage values where 95% likely to be "Coarse" or "Fine" by sieve

Statistical Relationships


- <u>Clay content vs Saturation Percentage</u>
- Can also assign updated ranges for sat percent values where 95% likely to be <18% Clay ("Low") or >18% clay ("Medium" or "High")

>46% for 'medium' or 'high clay'

<32% for 'low clay'

 Relevant to SAR/sodium in SST Ver 3.0

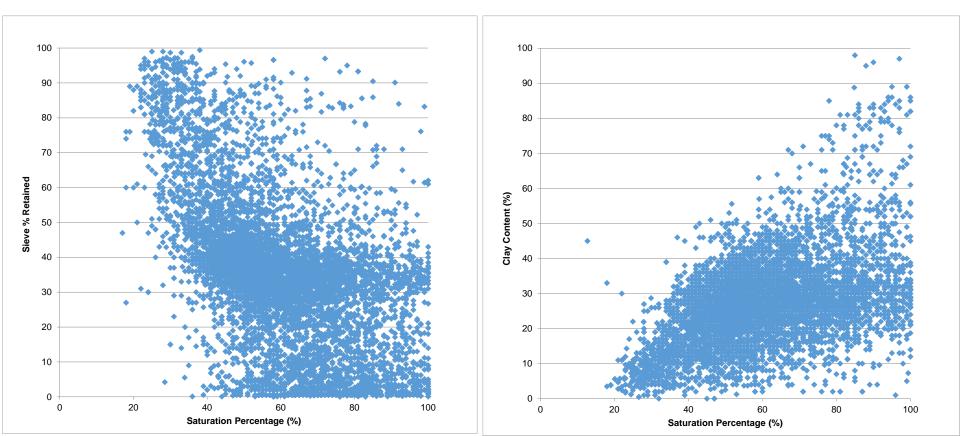
 Fairly similar ranges to previous dataset from 2014

Database Power-up!!!

Ref: The Mighty Hercules, 1963

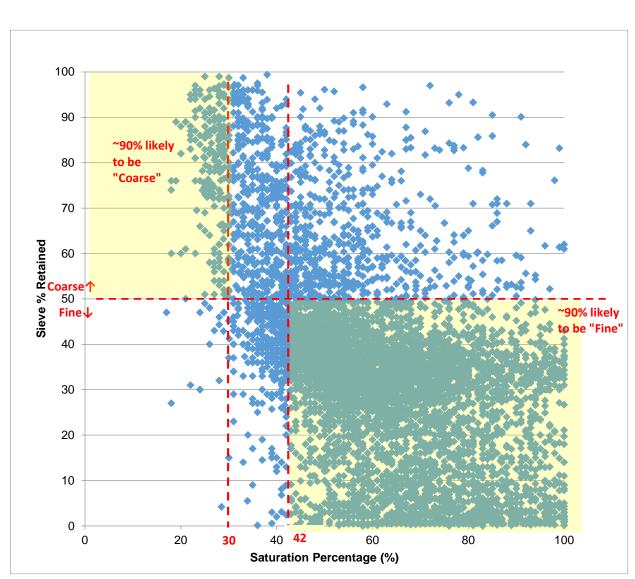
Expanded Database

 Larger industry-sourced database from different PTAC project was provided for further evaluation of saturation percentage and texture trends


Acknowledgements:

- Tyler Prediger (Matrix Solutions)
- **BP**
- Cardinal Energy Ltd.
- Cenovus Energy Inc.
- CNRL
- Crescent Point Energy
- Murphy Oil Corp.
- Orphan Well Association
- Whitecap Resources Inc.

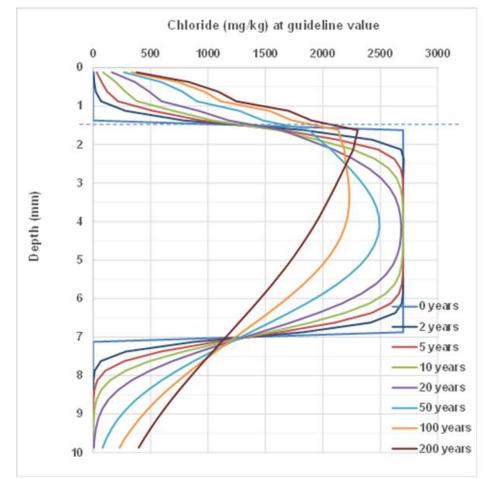
Expanded Database


- Additional data reviewed and compiled from ~980 sites
 - Alberta and Saskatchewan
- Approx 10,200 datapoints with both saturation percentage data and either hydrometer or sieve data
 - Approx 8,020 sieve datapoints
 - Approx 7,800 hydrometer datapoints
- So approximately 3.5 to 4-fold larger than original dataset

- Similar trends between original database and expanded database
 - Lower % retained with higher sat %
 - Higher % clay with higher sat
- Somewhat more scatter in expanded dataset than original dataset
 - Potentially due to broader geographical, lab, and date ranges

Results and Conclusions

- Generally similar results with expanded database
- Seems more practical to target 90% confidence for sieve data, compared to 95% confidence for hydrometer data
- Overall, sat % data allows very useful inferences about texture, both by sieve and hydrometer


SST Technical Manual

Overview

- Subsoil Salinity Tool (SST) Ver 3.0 was released with the Version 3.0 "User Manual", which represents an update from the "Help File" from Ver 2.5.3 and prior
- Due to the increasing amount of information, certain supporting technical details were excluded from the "User Manual" to be included in the "Technical Manual"
- Will include additional details and topics such as:
 - Climate and evapotranspiration
 - Moisture balance, drainage rates
 - Chloride modeling assumptions and techniques
 - Water table modeling and effect on vertical transport
 - Sodium modeling assumptions and techniques
 - Effects of SAR on hydraulic conductivity

Example Topic: Chloride Transport Progression

- Discussion provided of the internal modeling of chloride
 - Progression of depth profiles, starting from a square wave
 - Example of 1.5-7 m impact depth shown below over 200 years

Example Topic: Sodium Transport

- Additional modeling was performed for Version 3.0 using LeachC for sodium transport and influence on SAR
- Also considered transport and background concentrations of other relevant cations (calcium, magnesium)
 - All cations play an important role in SAR effects and sodium transport
- Discusses algorithm to estimate Ca+Mg based on EC, SAR, and saturation percentage
 - Used extensively in the sodium transport modeling
- Discusses correlations between factors such as transport distance and soil texture (based on clay content for cation exchange) to predict sodium transport from chloride data

Example Topic: Water Table Depth vs Upward Transport

- Additional modeling performed in Ver 3.0 with deeper water table to evaluate upward chloride migration
 - Deeper water tables have reduced risk of upward salt transport
 - Based on reduced diffusion through unsaturated soils (increased tortuosity), can be modelled with analyzed in LeachM
 - Implemented in Version 3.0, results in more lenient root-zone guidelines with deeper water tables, particularly when in recharge conditions and coarse soils

SST Course and FAQ

3.5-Day Full Certification Course [ON-LINE]

Fall 2023(recently completed)Spring 2024(**April, dates TBD**)

SST Frequently Asked Questions (FAQ)

Location where common SST technical questions will be answered, in some cases after vetting by AER/AEP

For further information:

Visit our webpage at www.eqm.ca

- Or contact SSTinfo@eqm.ca
- Or visit our LinkedIn page

Thank you!

SSTinfo@eqm.ca