

right solutions. right partner. Particle Size Analysis: How Selecting the Correct PSA Test can Change Applicable Regulatory Standards

RemTech Dwayne Bennett, P.Chem. October 2023

Safety moment – PPE

Plan ahead!

- 1. Know what your tasks are and the required PPE
- 2. Read the SDS for any chemicals that you may be using including preservatives
- 3. Evaluate hazards to ensure PPE is appropriate

right solutions. right partner.

Agenda

- An introduction to Particle Size
- Particle Size Methodology
 - Sieving and Sedimentation
- Applications of Particle Size Analysis
- Regulations and how Particle Size can shape remediation requirements.

Particle Size Analysis

- Sometimes also referred to as 'Grain Size'
- The measurement of the amount of a particles of a specified size in a sample
- Can be expressed in several ways
 - % passing : Percentage of a sample that passes a specified size

 - Discrete size ranges : Defined size ranges meaningful to specific classification systems
 - Sand, silt, and clay. But what are they?
 - Texture classification
 - d-values: particle size of the particles where a specified percentage will pass (e.g. d10)

Particle Size Analysis Methods

- ASTM D422-63 was the primary standard method used for many years
 - Has been withdrawn as of 2017
 - Still present in various references, guidance manuals, and regulations
- ASTM D7928 and ASTM D6913
 - Splits Particle Size analysis into two separate methods
 - ASTM D7928 Sedimentation Analysis by Hydrometer
 - ASTM D6913 Sieve Analysis
- Soil Sampling and Methods of Analysis
 - Standard for Canadian soil testing
- CCME Method Manual Vol 4
 - Used for primary guidance on both Texture Class and Fine/Coarse

How to test Particle Size in Soil

- Several methods are used for Particle Size testing:
 - Sieving
 - Dry Sieving
 - Wet Sieving
 - Sedimentation
 - Hydrometer
 - Pipette
- Other methods are available for testing as well:
 - Laser PSD
 - High speed photography

Particle Size Workflow

Specimen Size

- The maximum particle size will define the minimum aliquot size
- For typical soils, we may assume maximum particle size of 2 mm
- Is it representative?
- Analytical uncertainty of size fractions may increase as you increase particle size

Maximum Particle Size, mm	Method A Results Reported to Nearest 1 %	Method B Results Reported to Nearest 0.1 %
0.425	50 g	75 g
2.00	50 g	100 g
4.75	75 g	200 g ^ø
9.5	165 g ^c	D
19.0	1.3 kg ^c	D
25.4	3 kg ^C	D
38.1	10 kg ^{.c}	D
50.8	25 kg ^c	D
76.2	70 kg ^E	D

- Method A: Composite Sieve
- Method B: Single Set Sieve

right solutions. right partner.

Sieve Analysis

- Specimen is separated into individual size fractions using a series of sieves
- Two different sieving methods
 - Dry Sieving Sieving with mechanical agitation
 - Wet Sieving Sieving with the aid of water

- Two different approaches
 - Composite sieving
 - Split the sample into two portions: fine and coarse
 - Single set sieving
 - A single set of sieves used over the entire range
 - Sand fractionation

Sample Pretreatment

- Sample properties to consider for pretreatments
 - Is there material which can interfere?
 - Organic Matter
 - Carbonates
 - Salinity (Salts)
 - Are there aggregates?
 - Clumps of fine material clumped together
 - Could be treated as larger particles unless dispersed
 - Physical Dispersion: Shaking, Milkshake mixer, Mortar and Rubber Pestle
 - Chemical Dispersion: Using a chemical such as Calgon to chemical disperse the sample

Sedimentation Methods

- Used to determine the smaller particle sizes.
 - Too small for sieves
- Based on the principles of Stokes' Law
- Certain Assumptions are made
 - Spherical Particles
 - Smooth Surfaces
 - No inter-particle interactions
- Principle:

Larger Particles will settle faster than Smaller Particles

Sedimentation Methods

- Two methods typically used
 - Hydrometer Method
 - Referee Method
 - Determines relative density of the suspension
 - The more particles in solution, the higher the fluid density
 - Pipette Method
 - Direct measurement of the suspension
 - Gravimetric determination of the suspension

• Both methods are equivalent but sometimes may be prescribed

1

Reporting for Particle Size

- Typical reports are based on the classification used
- Can be simple or complex
- Simple Reporting
 - Fine/Coarse
 - "PSA-1" Soil Texture classification
 - Sand Fractionation
- Complex reporting
 - Different classification systems
 - Grain Size Curve
 - D% reporting

PSA Applications

• Applications can be based on the classification systems

- Wentworth

— AASHTO

- Unified
- -CSSC
 - Clay: < 0.002 mm
 - Silt: 0.05 mm 0.002 mm
 - Sand: 2.0 mm 0.05 mm

		FINE EARTH										ROCK FRAGMENTS				6" 150	15" 380	24" 600 mm	
										channers				flags	t stones	boulders			
USDA	CI	Clay		Silt		Sand					Gravel				Cob-	Stones	Boulders		
USDA	fine co. fine		co.	co. v.fi.		r	ned.	d. co. v.		ne	medium	coarse		bles	Otories	Douiders			
millimeters:	0.00	0.0002 .002 mm .02			.05	.1	.25	.5	1	2 m	m 5	5 2	20	76	25	50 mm	600 mm		
U.S. Standard Sieve N	lo. <i>(openi</i>	ng):			:	300 1	140	60	35	18	10	4	4 (3)	(4")	(3")	(10)")	(25")	
International Clay Silt			Sand				G	Gravel	Stones										
momun		.,				fine			COS	arse									
millimeters:		.002 mm .02 .20						2 m	m	2	20 mm								
U.S. Standard Sieve No. (opening):											10		(3/	/4")					
		Silt or Clov				Sand					Gra	avel	Oshblas			Davidara			
Unmed	Unified Silt of Clay fine medi		nedium	c	.o.	fine coarse			Copples	S	Boulders								
millimeters:					.074 .42			2 m	n 4.8 19 7				76 300 mm						
U.S. Standard Sieve N	lo. (openi	ng):				200			40		10	4	4 (3/4	4") ((3")				
						Sand					Gravel or Stones				Broken Rock (angular),				
AASHIO		ay		Sill			fine	е		coarse		fine	e med	. со.	or Boulders (roun		(rounded)		
millimeters:		.0	05 mm			.074	ŀ		.42		2 m	m	9.5	25	75 r	mm			
U.S. Standard Sieve No. (opening):						200			40		10		(3/8")	(1") ((3")				
phi #:	12	10	98	7	65	4	3	2	1	0	-1	-2	-3 -4	-5 -6		-7 -8	-9 -'	10 -12	
Modified Wentworth	•-//	clay –		s	silt ——			s	and –				— pebbles		¢c	Dbbles	- bou	ders -	
millimeters: .00	0025	.0	02 .004	.008 .0	.031 .031	.062	.125	.25	.5	1	2	4	8 16	32 64	Ļ	128 256	6	4092 mm	
U.S. Standard Sieve N	lo.:					230	120	60	35	18	10	5							

PSA Applications

- Applications can be based on the classification systems
 - Wentworth
 - AASHTO
 - Unified
 - CSSC
- Can be used for texture classification (sand, silt clay)
 - Used in determining soil properties, fertilizer applications
- Texture classification (Fine/Coarse)
 - Used in regulatory evaluations

Courtesy of AAFC CSSC

right solutions. right partner.

PSA Applications

- Applications can be based on the classification systems
 - Wentworth
 - AASHTO
 - Unified
 - -CSSC
- Can be used for texture classification (sand, silt clay)
 - Used in determining soil properties, fertilizer applications
- Texture classification (Fine/Coarse)
 - Used in regulatory evaluations
- Other regulatory applications
 - Septic field requirements
 - MMER Applications (Metal and Diamond Minting Effluent Regulations)

PSA for Regulatory Purposes

- Fine/Coarse texture class is defined based on material passing a 0.075 mm sieve
 - > 50% passing = Fine
 - <= 50% passing = Coarse</pre>
- Typical analysis is sieving the material with the aid of water (Wet sieve)
- But what gets testing for fine/coarse?
 - CCME & SK Whole sample used for evaluation (including > 2mm)
 - Ontario Perform fine/coarse evaluation on < 2mm portion</p>

- Alberta

- Evaluate >2mm. If > 70%, treat as coarse
- Otherwise, perform fine/coarse evaluation on < 2mm portion

Applications to CCME guidelines

ALS

- The texture of a soil can impact the regulatory guidelines
- Typically, soil texture will impact the mobility of the analytes
 - Coarse material allows for higher mobility
- For example, Xylene in Soil (Residential/Parkland)

Concentration (mg/kg dry weight) Residential/ parkland Table

	,		
	Guideline	Coa	rse Fine
Xylenes (mg/kg)			
Surface (≤1.5m)		11	2.4
Subsoil (>1.5m)		11	2.4

Retrieved from CCME.ca on 2-Oct-2023

Alberta Guidelines

- Particle size can impact how to classify the sample
- Risk-based approach
 - If there is significant (>70% > 2 mm) larger particles, a tier 1 approach is not appropriate.
 - Fine and coarse can be further evaluated on the < 2mm</p>
- Alberta soil and ground water guidelines give values based on fine and coarse for evaluation. For example, F3 Direct Soil Contact

Receptor	Overall 0	Guideline	Hur	nan		Ecological									
Pathway			Prote of Dor Use A	lection mestic Direct Soil Contacta Aquifer		Nutrient/ Energy Cycling Check	Livestock Soil and Food Ingestion	Wildlife Soll and Food Ingestion	Protection of Freshwater Aquatic Life		Protection of Wildlife Water		Management Limit		
Soil Type	Fine	Coarse	Fine	Coarse	Fine	Coarse		•		Fine	Coarse	Fine	Coarse	Fine	Coarse
Building Type				-	-	•	-	-		-	-	-	-	-	-
Unit	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Benzene	0.046	0.078	0.046	0.078	120	62	-	na	na	7.9	0.17	15	0.33	-	-
Toluene	0.52	0.12	0.52	0.95	220	150	-	na	na	63,000	0.12	NGR	1,000	-	-
Ethylbenzene	0.073	0.14	0.073	0.14	240	110	-	na	na	NGR	540	NGR	17,000	-	-
Xylenes	0.99	1.9	0.99	1.9	130	190	-	na	na	NGR	41	NGR	16,000	-	-
F1	420	420	1,100	2,200	420	420	-	na	na	30,000	1,300	NGR	30,000	800	700
F2	300	300	1,500	2,900	300	300	-	na	na	30,000	520	NGR	30,000	1,000	1,000
F3	2,600	600	-	-	2,600	600		na	na	-	-	-	-	3,500	2,500
F4	10,000	5,600	-	-	11,200	5,600	-	na	na	-	-	-	-	10,000	10,000

Alberta Tier 2 requirements

- Very coarse textured Materials
- Enhances groundwater or vapor transport
- Requires a risk-based assessment of contaminants

Review of pathways including

- Groundwater
- Soil Contact
- Ingestion by Wild Life

Alberta Analytes affected by PSA

- Soil and Groundwater guidelines can be affected
 - VOCs including BTEX
 - PHC F1-F4
 - Pesticides and Herbicides
 - Polycyclic Aromatic Hydrocarbons (PAHs)

21

 Water Use
 Lowest Guideline

 Soil Type
 Fine
 Coarse

 Unit
 (mg/L)
 (mg/L)

 Pyrene
 0.71
 0.000092

 Methoxychlor
 0.90
 0.00017

Some analytes have guideline differences orders of magnitude different!

Summary

- Particle Size Determination can be used in a number of different applications
- Used in determining regulatory needs
- For Fine/Coarse, It's important to know which method ap

	CCME Federal and SK	'As Received'						
	Ontario	< 2mm evaluated only						
	Alberta	>70% 2mm Tier 2						
1		Fine/coarse on < 2mm						
	ואטוב נטווואובא אמוווגוב אבפא וובבתבת וטו נטוואנוענוטוו							

- Inore complex particle sizes needed for construction, roadways, engineering projects
- Contact the laboratory as part of your sampling plan to identify your analytical and sampling needs

Thank you!

Questions?

right solutions. right partner.

> Dwayne Bennett, P.Chem. National Technical Specialist, Canada

2559 29 Street NE Calgary, AB, Canada T1Y 7B5 dwayne.bennett@alsglobal.com T: 1 403 407 1785