

SLRCONSULTING.COM

Windermere Wetland: A Recent History

Contamination, Remediation, Restoration, Monitoring and Management

券SLR

May 2023

Potential Transformation?

History: Wetland used as sediment trap, full in 2000, end of design life

Challenge: 'We have been working on improving this environment for years. What makes you think this time will be different?'

Project Environment – Discovery Phase

Vegetation Survey

Field surveys were undertaken to characterize the existing flora and fauna as follows:

- Cultural meadows around the perimeter of the Basin, with dominant species typical of recently disturbed soils.
- Woody species, typical early-successional and non-native, located along the basin shoreline and near fence lines.
- Four submergent aquatic species, all common and tolerant of turbid water and existing water chemistry

Wildlife & Aquatic Survey

Wildlife Survey

- The Basin is home to 3 nesting colonial water bird species: ring-billed gulls, common tern, and black-crowned night heron
- Four species of duck make use of the open water in the Basin year-round: Scaup, Mallard, Black Duck, Ruddy Duck

Aquatic Survey

 Fish caught in the Basin included: common carp, largemouth bass, common shiner

꾻

Water Quality Assessment

To provide a general indication of the water quality characteristics of the Basin under two scenarios:

- Low flow / dry event conditions (end of summer/early fall)
- High flow/storm event conditions when the Combined Sewer Overflow (CSO) is discharging into the Basin

Sediment & Water Quality Conclusions

- Sediments exceed the SEL, PWQO or CCME guidelines
- Risks associated with the sediment and water quality were investigated through human health and ecological risk assessment
- Opportunities to mitigate conditions through the design process

Planning – Design Charette

Broad Discussion – Open Palette

- Manage contaminated sediment
- Source water
- Sediment transport
- Wetland Features
- Vegetation
- Nesting Birds
- Other Wildlife
- Fish
 - Community type
- Invasive Species Management
 - Vegetation
 - Fish species

Competent Multidisciplinary Team

Implementation Then: Pre-Restoration

June 2010 ile # 2u4q4056

Remediation & Restoration Channel construction nearing completion

Isolate wetland from CSO

- Channel objectivesIsolate wetland from
 - treated effluent
 - Provide sediment transport

Remediation & Restoration Activities

꾻

Reconfigured 2010 - 2011

Features

- Finger Dykes
- Tern Islands
- Fishway

Fishway Adaption

Fishway Design – Carp Exclusion

FISH GRATE DETAIL - 50mm CLEAR OPENING

쑸

Monitoring Approach

Spring

 Coincide with spawning periods for fish species found in Redhill Creek

Fall

 Coincide with the onset of winter conditions when fish might move from the wetland to Redhill Creek

Cumulative Number of Species Captured During Sampling Events 2015 - 2022

Fish Collections, Spring and Fall: 2015 - 2022

Invasive Species

2018 Percent Species Composition (excluding Fathead Minnow)

Management – the long game Common Carp

- By 2018 numerous adult carp observed in the wetland
- Two approaches were used to remove common carp:
 - Manual removal, netting
 - Electrofisher removal

Invasive Species

Invasive Species Capture

2022 Common Carp Captured per event:

- June 3rd: 36
- August 11th: 20
- October 21st: 39

Invasive Species: Innovative Management

Invasive Species Management: Innovative Management

꾻

N=10

꾻

Aquatic Vegetation

Management – Water Quality Windermere Wetland: Dissolved Oxygen & Water Temperature

꾻

Average D.O Average Temp

꾻

Water Quality Summary

- Phosphorus generally very high
- Meso-trophic condition is 0.010-0.030 mg/L for TP
- Phosphorus declined from April to June, then increased without water inputs

Ultrasound Trial – Phytoplankton Analysis

- Phytoplankton concentration 100 time greater in control location in July
- Concentration in test area when ultrasound was removed

Species Detection

Environmental DNA, eDNA

- Early Detection
 - Species at Risk
 - Early invasive species
- Other wildlife, cryptic species
 - Amphibians
 - Reptiles

Review

Discovery Phase

- Reality check
- Resolve competing objectives
- Competent multidisciplinary team

Planning

- Broad based input
- Aim high resist temptation to say too soon: 'that's impractical'

Implementation (Construction)

Expect surprises

Management – Long term

- Annual meeting
- Sharing information
- Reporting
- Results-based activity planning
- Innovation
- Pilot studies and follow-up

꾻

Making Sustainability Happen

SLRCONSULTING.COM

Gord Wichert

Technical Director - Ecology

M +1 905 415 7248 E gwichert@slrconsulting.com

