

Knock-knock, Who's There? Using NGS to Understand Your Environment

Melody Vachon (SiREM), Ron Gestler (Geosyntec Consultants), Jennifer Wilkinson (SiREM), Courtney Toth (University of Toronto), and Phil Dennis (SiREM)

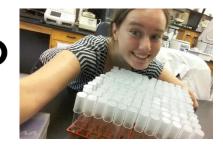
Presented by: Melody Vachon **RemTech East** Niagara Falls Ontario 31-May-2023

siremlab.com

About Me

I am a:

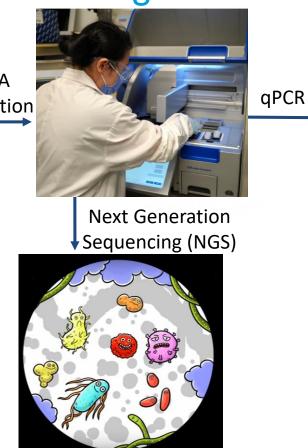
- Microbiologist
- Molecular biologist
- Bioinformatician
- Big nerd



B.Sc. Microbiology

M.Sc. Environmental Microbiology

siremlab.com


Leading Science · Lasting Solutions

Molecular Biological Testing

DNA Extraction

Samples

Microbial Community Profiles

Leading Science - Lasting Solutions

Certificate of Analysis: Gene-Trac[®] NitroGen™ Ammonia Monooxygenase A Assay

Custom		its	SIREM Reference: S-8258
			Report Date: 4-Oct-21
	184		Data Files: QS3A-amoA-QPCR-0102

Table 1d: Test Results

Sample ID	Ammonia Monooxygenase A amoA (archaeal)		Ammonia Monooxygenase A amoA (bacterial)		
-	Percent (2)	Gene Copies/Liter	Percent ⁽²⁾	Gene Copies/Liter	
MW-2-20210803	0.01 - 0.03 %	3 x 10 ⁵	NA	1 x 10 ⁴ U	
MW-1-20210803	0.006 - 0.02 %	5 x 10 ⁴	NA	1 x 10 ⁴ U	
INJ1-20210803	0.002 - 0.007 %	1 x 10 ⁵	NA	1 x 10 ⁴ U	

See final page for notes

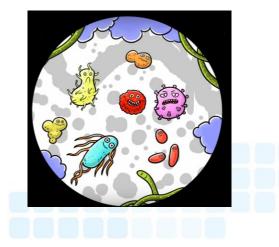
Quantify Specific Gene targets

A Few Ways to Look at Your Bugs

gene trac

Quantitative PCR

Quantify specific pre-selected targets:


• Microbial, e.g., Dhc, Dhb, Dhg

• Functional genes e.g., tceA, bvcA, vcrA

siremlab.com

Next Generation Sequencing Characterize the entire microbial community

If Microbes Were Cars in a Lot...

Quantitative PCR Tests

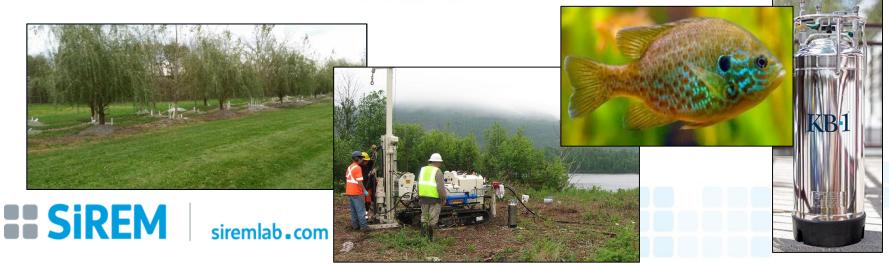
"There are 27 VWs"

SiREM

Next Generation Sequencing (16S rRNA Amplicons)

"There are 27 VW, 14 Honda, 30 Toyota, 2 Ford, 6 Chevrolet..."

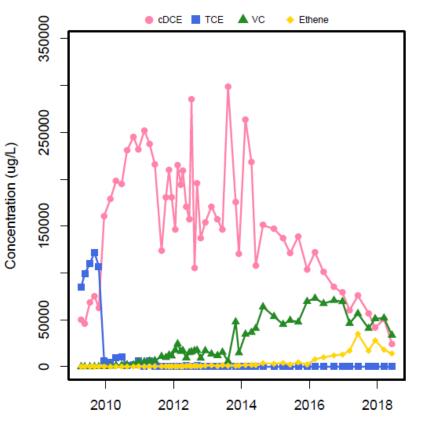
siremlab.com


Metagenome Sequencing

Learn every car make (microbe) and all the individual parts of the cars (genes)

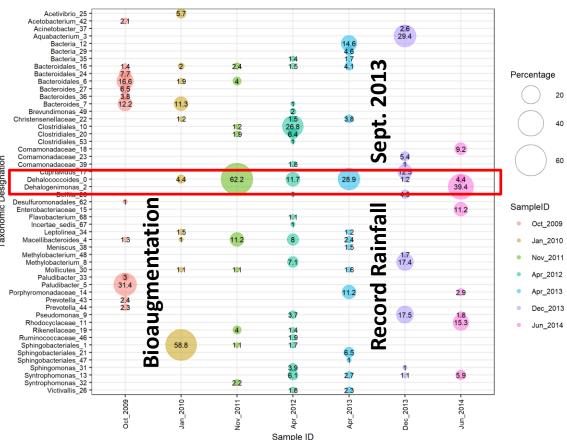
Some uses of Molecular Biological Tools

- Enhanced *in situ* groundwater remediation
- Characterization of microbial cultures used in bioaugmentation
- Characterization of plant associated bacteria in phytoremediation
- Characterization of water associated biota using eDNA

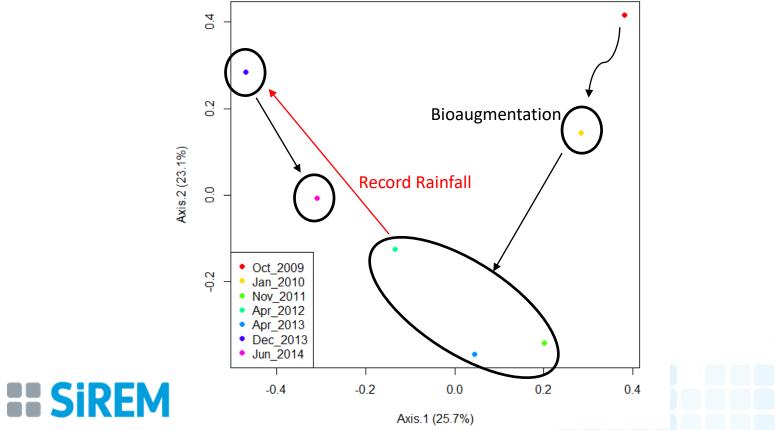


Using NGS Over Time in Remediation Projects

Oregon Site Dechlorination

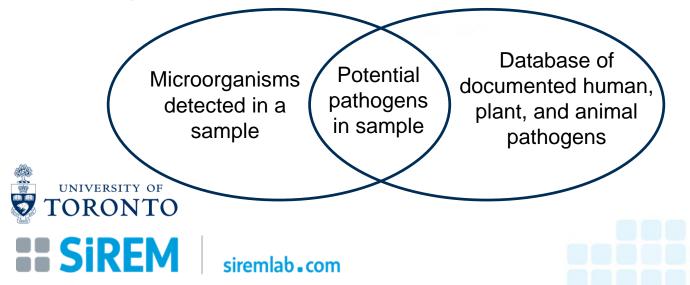


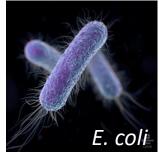
- Bioaugmentation site KB-1 (Dhc)
- >99% TCE mass removal after one year
- Residual cDCE and VC are declining
- Long term Dhc monitoring and NGS study


Oregon Site NGS

- Dehalococcoides (Dhc) increases after bioaugmentation
- Dehalococcoides (Dhc) decline after April 2013 Why?
- September 2013 was the wettest on record in Oregon, 17 cm rain = surface water infiltration

Oregon Site NGS




Bioaugmentation Culture Characterization


siremlab . com

Are pathogens present?

- Pathogens are microorganisms that can cause disease
- NGS can be used to detect the DNA signature of pathogens in a sample

Using NGS to Characterize Cultures

- NGS data is used to ensure our bioaugmentation cultures meet Canada's New Substances Notification (NSN) Regulations Canada
 - Characterize all microorganisms present in the culture
 - Ensure the absence of dangerous microorganisms
- Example: NSN Approval of DGG-Plus in 2022, an anaerobic microbial consortium for environmental treatment of benzene, toluene, and xylene
- We confirmed that there was no significant evidence of pathogens

Potential Pathogens in Landfill Leachate

LEGEND

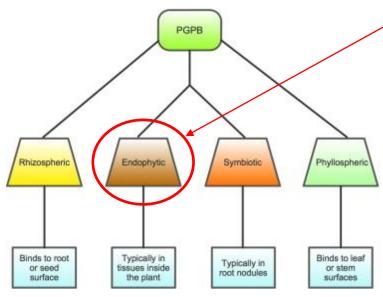
GREEN = major ASV (>1% of archaea or bacteria in 1 or more sample) YELLOW = minor ASV (0.1 - 1% of archaea or bacteria in 1 or more sample) RED = trace ASV (< 0.1% of archaea or bacteria in 1 or more sample)

NCBI Accession Number	Sequence Description	Percent Identity	ASV ID	Number of Reads	Percent Total Reads
NR_044743.1	Bartonella bacilliformis strain KC583 16S ribosomal RNA gene	97.863	118	603	3.11%
NR_114518.1	Acidovorax konjaci strain ICMP 7733 16S ribosomal RNA gene, partial sequence	97.419	49	181	0.93%
AY922323.1	Brucella melitensis isolate Kars1 16S ribosomal RNA gene, partial sequence	97.441	342	116	0.6%
NR_103934.2	Pseudomonas stutzeri strain ATCC 17588 16S ribosomal RNA, complete sequence	99.785	131	62	0.32%
KF378762.1	Mycobacterium phlei strain CM32 16S ribosomal RNA gene, partial sequence	99.142	1160	42	0.22%
NR_113238.1	Brevundimonas diminuta strain JCM 2788 16S ribosomal RNA gene, partial sequence	100	512	27	0.14%
AF017749.1	Stenotrophomonas maltophilia 16S ribosomal RNA gene, complete sequence	98.287	581	25	0.13%
AJ278450.1	Bordetella parapertussis partial 16S rRNA gene, strain DSM 4922	100	981	26	0.13%
NR_103934.2	Pseudomonas stutzeri strain ATCC 17588 16S ribosomal RNA, complete sequence	99.571	408	21	0.11%
NR_041756.1	Acidovorax cattleyae strain ICMP 2826 16S ribosomal RNA gene, partial sequence	97.204	706	18	0.09%
NR_103934.2	Pseudomonas stutzeri strain ATCC 17588 16S ribosomal RNA, complete sequence	97.854	902	17	0.09%
AB682670.1	Bordetella pertussis gene for 16S rRNA, partial sequence, strain: NBRC 107857	98.048	684	14	0.07%
AB682670.1	Bordetella pertussis gene for 16S rRNA, partial sequence, strain: NBRC 107857	99.349	754	14	0.07%
NR_103934.2	Pseudomonas stutzeri strain ATCC 17588 16S ribosomal RNA, complete sequence	99.142	279	14	0.07%
JX129161.2	Bordetella bronchiseptica strain 78B1 16S ribosomal RNA gene, partial sequence	97.419	2504	9	0.05%
NR_113238.1	Brevundimonas diminuta strain JCM 2788 16S ribosomal RNA gene, partial sequence	99.548	599	10	0.05%
NR_118052.1	Burkholderia andropogonis strain LMG 2129 16S ribosomal RNA gene, partial sequence	97.222	2500	9	0.05%

Looking for Plant Associated Microbes

Geosyntec[▶] Using NGS with Phytoremediation

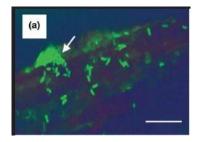
- In general, plant-associated microbes aid in plant growth, help acquire nutrients and moisture from soil, confer resistance to stresses, and some fix N₂
- **Phytoremediation Sites**
 - Petroleum Hydrocarbon/BTEX Site in Oklahoma
 - TCE/TCA Site in Pennsylvania
- **Study Goal** Characterize plant-associated microbes that may play a major role in contaminant degradation in phyto systems e.g., PHCs and TCE



consultants

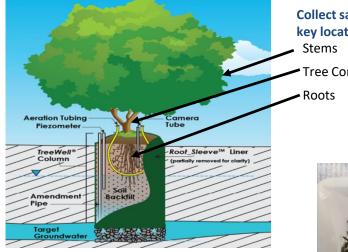
Plant Growth Promoting Bacteria

siremlab.com


Source: Glick, B. Bacteria with ACC deaminase can promote plant growth and help feed the world. Microbiological Research, Vol. 169, Issue 1, Jan. 2014, pp: 30-39

SiREM

Endophytes – subset of microbes that reside within plant tissues

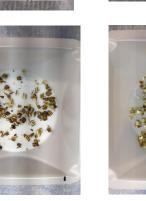

 Include specific bacterial species may aid in degrading certain contaminants *within*

plants

Tree Samples

Collect samples at three key locations:

- Tree Cores



SF willowstern

5F-W.110W (2015) == 1

Are contaminant degraders present in tree tissue?

Common Endophyte Genera Detected:

• Burkholderia, Azoarcus, Rahnella, Pseudomonas, Pantoea, Enterobacter, Arthrobacter, Streptomyces, Bradyrhizobium

Other Specific Genera or Species Detected with Biodegradation potential:

- *Dehalococcoides* spp., known CVOC degraders
- *Pseudonocardia* spp., include 1,4-Dioxane degraders
- Polaromonas spp., aerobic degraders of Naphthalene & DCE
- Phenylobacterium include obligate herbicide degraders
- *Methylibium* spp., known MTBE degraders
- Variovorax paradoxus known benzene degrader
- Enterobacteracea spp. wide range of biodegradation activities
- Pseudomonas wide range of biodegradation activities

Siremlab.com

Detecting Larger Organisms with Environmental DNA

What is eDNA?

- Environmental DNA is expelled and accumulates when an organism interacts with an environment
- Analysis is cheaper & easier to perform than physical bioassessment surveys
- eDNA can be used to:
 - $\circ~$ Determine ecological health of water bodies
 - $\,\circ\,$ Assess changes to ecosystems over time
 - $\circ~$ Detect presence of endangered species
 - $\,\circ\,$ Track invasive species


Sequencing Gene Targets

- Gene-Trac NGS (Bacteria and Archaea 16S rRNA)
- Fish
- Macroinvertebrates
- Amphibians

eDNA Targets 12S rRNA (fish only) Cytochrome C Oxidase 1

DNA was extracted from water and sediment

Conclusions

Some of many applications of NGS:

- Track entire microbial communities during bioaugmentation
- Predict functions of the microbial community
- Determine whether pathogenic microorganisms are present
- Look for contaminant degrading bacteria in plants, soil, and groundwater
- Assess larger organisms including fish, macroinvertebrates, and amphibians

Thank you for your attention!

Melody Vachon, M.Sc. Environmental Microbiologist SiREM mvachon@siremlab.com 519-515-1317

