

In-Situ and Ex-Situ Remediation of cVOC Impacts in Conjunction with Site Construction Activities:

Challenges & Perspectives from the Landowner, Consultant and Remedial Contractor

Remtech East 2023

Albert Ho

First Capital REIT Senior Director Environmental Programs

Jaka Suryana

Stantec Associate, Senior Environmental Engineer

Oskar Pula

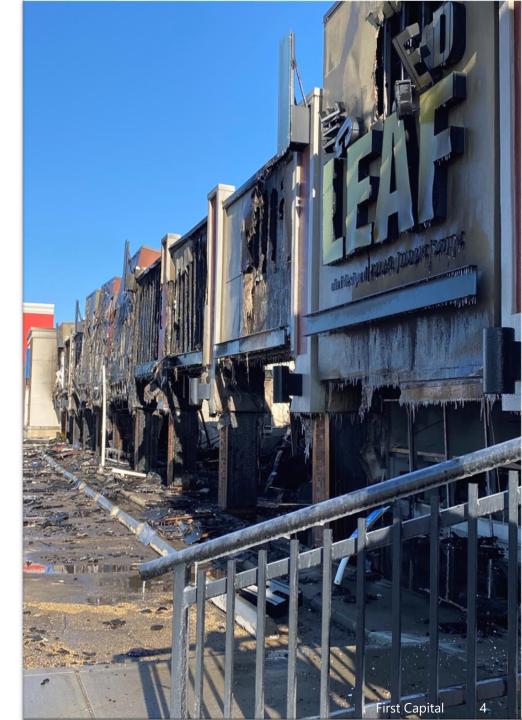
Trium Environmental Inc. Vice President, Operations

Introduction

- Acquired property in early 2000s, original slab on grade construction 1960. No major environmental concerns.
- Former dry cleaner operated from 1994 to 2001.
- Soil and groundwater exceedance RMP and due to changes in standards 2017 the implementation of an active vapour mitigation system was required as a risk management approach to address vapour inhilation risk.
- April 2021, a fire caused by arson burnt down the building

Opportunities

- 1. Remediate prior to reconstruction (while shopping centre continues to operate)
- 2. Remove RMP requirement including to operate vapour mitigation system
- 3. Excavated contaminated hot spot
- 4. In-situ remediation of groundwater



Expected Timelines

- 1. September 29 to October 8: Injections
- 2. October 18 to 23: Excavation of Hot Spot
- 3. October 23 to 28: Backfilling and compaction
- 4. October 29: Demobilization

Remediation to be completed within a month or so ...

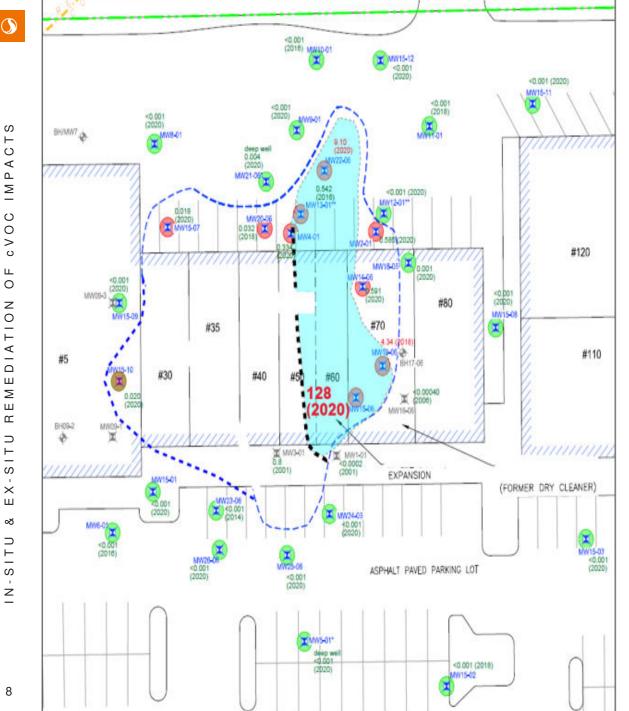
Supplemental Environmental Investigations (Pre-Remediation)

ALBERTA ENVIRONMENT AND PARKS, ALBERTA TIER 2 SOIL AND GROUNDWATER REMEDIATION GUIDELINES, 2019

(2019 AEP Tier 2 Guidelines – Commercial, Fine-Grained Soils with Pathway Exclusions)

ADDITIONAL INVESTIGATIONS:

- 1) Verification of Non-Potable Groundwater
- 2) cVOC Impact Delineation Investigations

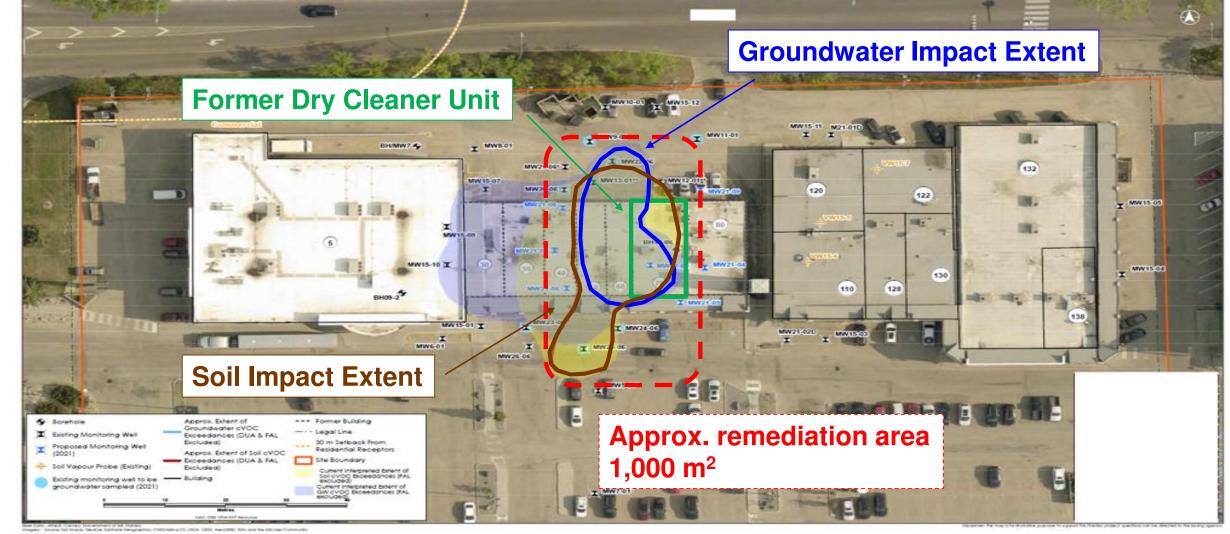

-	Flexible Wall Hydraulic Conductivity Test ASTM D5084	OFFICE 325 - 25th Street SE Suite 200 Calgary, Alberta Canada T2A 7H8 Tel: (403) 716-8000	LABORATORY 10830 - 46th Street SE Calgary, Alberta Canada T2C 1G4 Tel: (403) 253-7876
Tested by CLIENT:	r: J. Ma First Capital Asset Management L	P PROJECT No.:	123513680.1207
PROJECT TITLE:	hisi Capitai Asser Management L	DATE:	July 5, 2021
AMPLE DESCRIPTION:	Clay, trace Sand and Gravel	SAMPLE No.:	MW21-01D
NITIAL SAMPLE DATA Length (cm) Diameter (cm) Area (cm ²) Total Mass (g)	12.11 7.29 41.74 1080.0	FINAL SAMPLE DATA Length (cm) Diameter (cm) Area (cm ²) Total Mass (g)	12.35 7.3 41.85 1102.6
Volume (cm ³) Water Content (%) Degree of Saturation (%) Wet Density (g/cm ³) Dry Density(g/cm ³) Assumed Specific Gravity	505.5 17.6 98 2.137 1.817 2.70	Volume (cm³) Water Content (%) Beta Saturation (%) Wet Density (g/cm³) Dry Density(g/cm³)	516.9 19.5 98 2.133 1.785
CONSOLIDATION PHASE Cell Pressure(kPa) Top Cap Pressure(kPa) Bottom Cap Pressure(kPa) Consolidation Pressure(kPa	555 535 535 20	HYDRAULIC CONDUCTIVITY Cell Pressure (kPa) Top Cap Pressure (kPa) Bottom Cap Pressure (kPa) Hydraulic Gradient	560 555 a) 535 16.8
Communications	Adding results	1.0E-07	
Cumulativ			

Soil Conditions

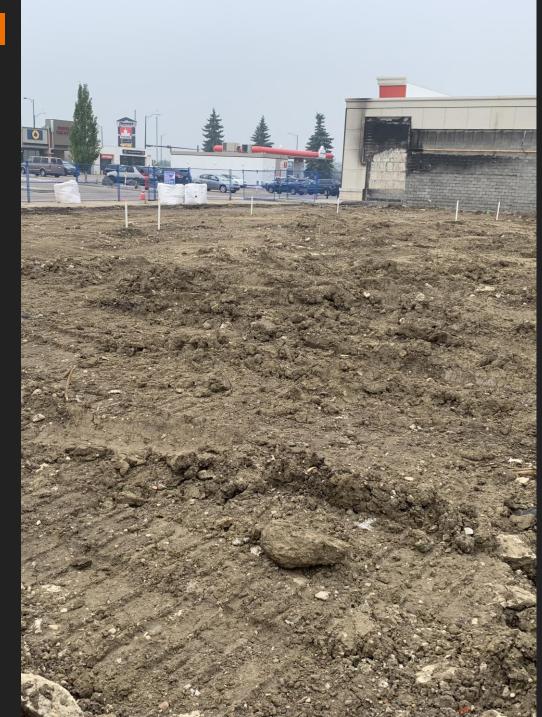
- Soil PCE concentrations of up to 1,330 mg/kg within the source area
- Soil PCE Guideline exceedances extended vertically down to 4.5 m BGS
- Presence of PCE degradation products (TCE, cis-1,2-DCE) in soils at low levels

□ Soils are predominantly **<u>fine-grained</u>**

Soil hydraulic conductivities: Shallow zone - 2.54 x 10⁻⁷ m/s Deeper zone - 4.91 x 10⁻⁹ m/s



>

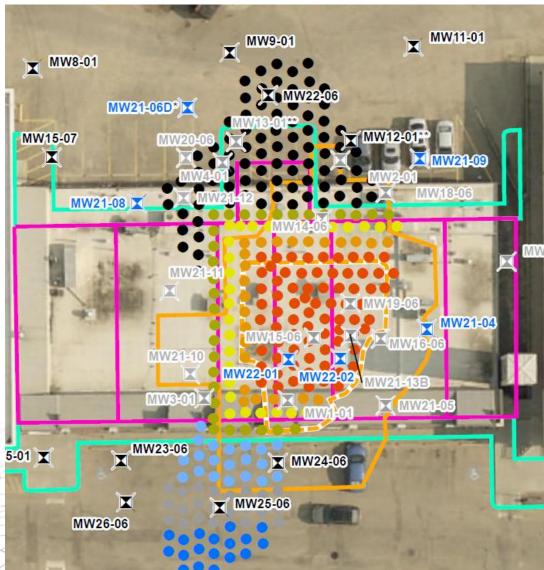

8

Groundwater Conditions

- Groundwater PCE concentrations of up to 223,000 μ g/L within the source area historically
- Groundwater PCE Guideline exceedances extended vertically down to 9.0 m BGS
- □ Presence of PCE degradation products (TCE, cis-1,2-DCE, trans-1,2-DCE) in groundwater at low levels
- □ Shallow groundwater depths ranged from 0.4 to 4.2 m BGS

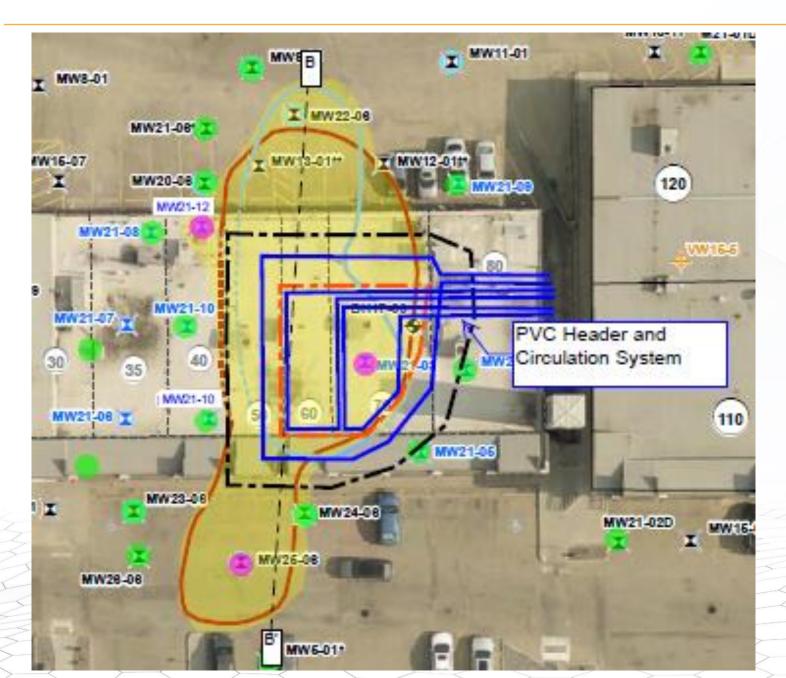
Overview of Impact Conditions Pre-Remediation

Remediation Criteria for Success


- Meet regulatory standards, so active risk management measures are not required
- Effectively address hot spot beneath the building
 - Address shallow and deep groundwater contamination
 - Address soil contamination in the saturated and unsaturated zones
- Minimal disruption to operating shopping centre (customers, businesses and traffic)
- Completed remediation in collaboration with client's reconstruction of the building

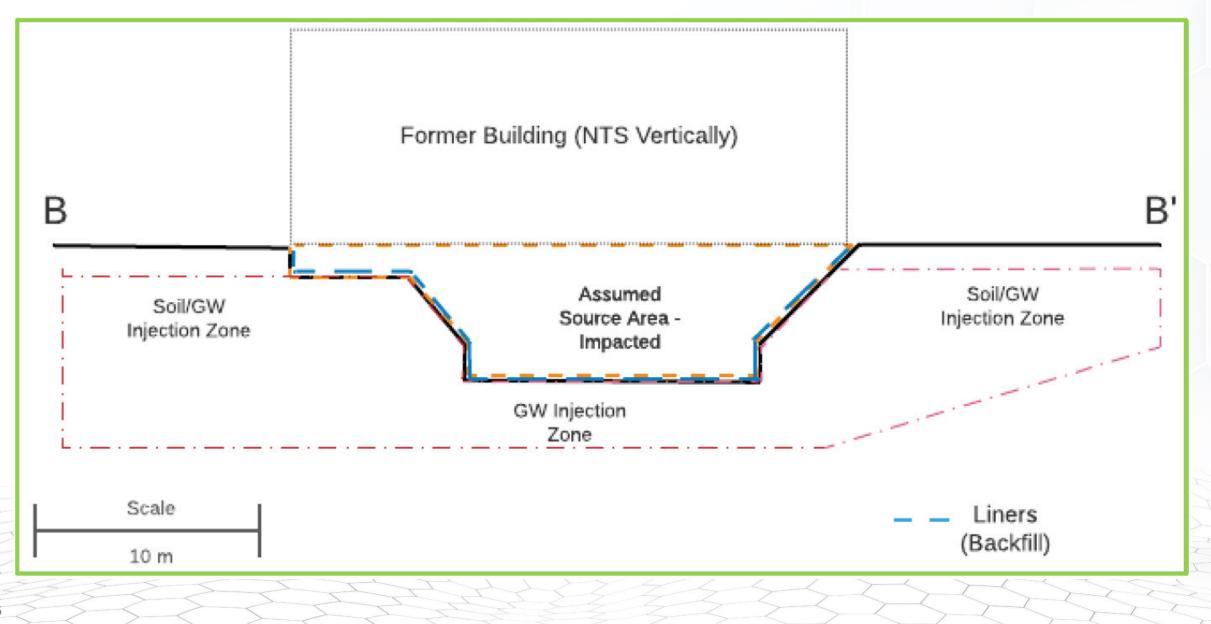
TRIUM Scope of Work

- Remediation Program Design
 - Working with First Capital (Enviro and Construction) and Stantec
- Complete Field Program Prime Contractor
 - In-situ Program
 - Ex-situ Program
 - Re-circulation System
 - Base Amendments


- In-situ Chemical Reduction (ISCR)
 - Injection of EHC-L and KB-1
 - Microemulsion of a controlled-release, food-grade carbon, nutrients, and iron
 - Bioaugmentation species targeting all chlorinated compounds (Dhc)
 - Proposed 70,000 L in 300+ injections points
 - Source Area
 - Below the excavation walls
 - South Extent
 - North Extent

triuminc.com

- Ex-situ Remediation
 - Excavation of source area
 - Volumes determined
 - 225 m³ over burden (to be stockpiled onsite)
 - 1,400 m³ impacted soils
 - Hot loading
 - Amendment at base of excavation
 - Daramend controlled-release fermentable organic carbon substrate combined with macro size zero valent iron (ZVI).
 - Re-circulation System
 - Install at base of excavation and 3 mbg
 - Tie in to east side of property for future access
 - Liner Placement
 - Backfill excavation


15

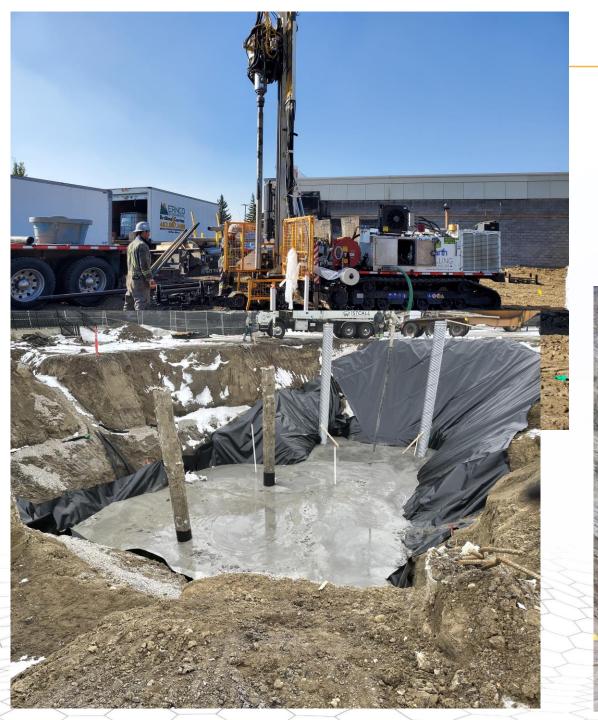
triuminc.com

Legend

Light blue – GW impacted area Brown – Soil impacted area Yellow – Soil and GW impacted area Black – Upper extent of excavation Red – Base of excavation Blue – Circulation system

triuminc.com

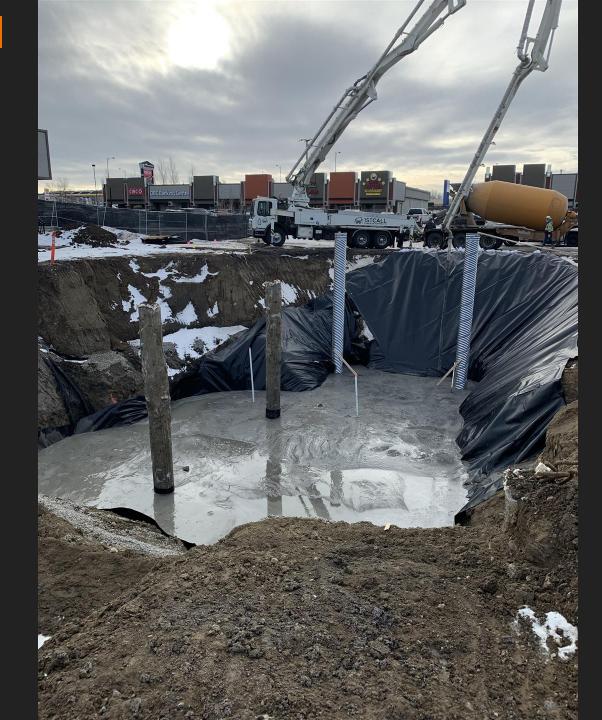
- Sept 27/28 Project Kick-off and all contractors mobilize
- Sept 29 Oct 26 Complete injections
 - Holiday break
- Oct 18 Mobilize Earthworks equipment
- Oct 19 23 Complete Excavation
- Oct 23 28 Complete Backfilling
- Oct 29 Demobilize all Equipment


Remediation Program and Schedule (Actual)

- Sept 27/28 Project Kick-off and all contractors mobilize
- Sept 29 Nov 4 Complete injections
- Oct 18 Jan 10 Mobilize Earthworks equipment
- Oct 19 23 Feb 2 Complete Excavation and demobilize equipment
- Oct 23 28 Feb 8 Complete Backfilling

triuminc.com

Remediation Summary


Details	Proposed	Actual
Number of Points	300+	323
Volume of Injectate	70,000 L	71,077 L
Time spent on injections	26 days	37 days
Volume Excavated	1,400 m ³ (approx. 2,500 tonnes)	4,279 tonnes
Time spent on excavation	11 days	17 days

Remedial Excavation – Soil Confirmatory Sampling

Consultant Lessons Learned

- Seize the opportunity to remediate
- Be prepared for the unpredictability
- Collaboration among different teams is key
- Keep close eyes on construction progress

Key takeaways/ Lessons Learned

- Need to be adaptive with planning and scheduling when working with multiple stakeholders
- Installation of pilings prior to excavation required significant planning and work
- Winter excavation results in considerable changes for scope and safety

Landlord Lessons Learned

- 1. Delineation only provides the <u>minimum</u> excavation extent, depth and volume
- 2. Do not guarantee to stakeholders remediation costs and/ or timelines
- 3. Remedial action plans need to be adaptive to be able to address the remedial objective. The team matters!
- 4. Construction (Redevelopment) makes projects more complicated. Collaboration is key to be proactive to avoid surprises.
- 5. Unexpected events can present an opportunity for remediation

Questions or Comments ?

Albert Ho Senior Director Environmental Programs

First Capital REIT Albert.Ho@FCR.ca

Jaka Suryana Associate, Senior Environmental Engineer

Stantec Jaka.Suryana@Stantec.com

Oskar Pula Vice President, Operations

Trium Environmental Inc. OPula@Triuminc.com