Understanding ISCO Field Applications by Assessing Geochemical Data

Brant Smith Director of Technology

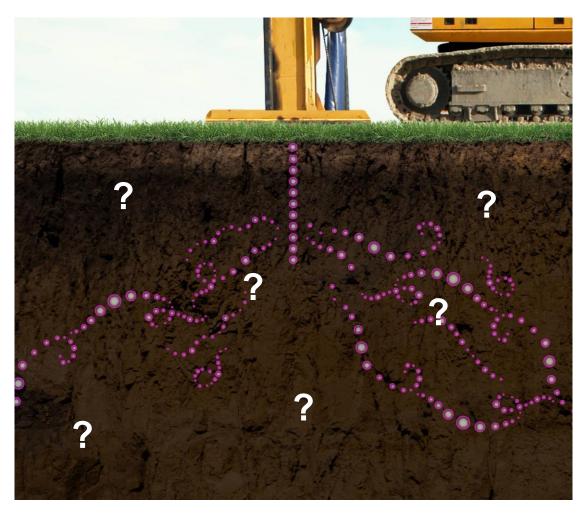
Soil & Groundwater Remediation

Remtech East | June 1, 2023

Key Elements of Designing and Applying Klozur[®] Persulfate

- <u>Chemistry</u>: Is the contaminant degraded by activated Klozur[®] Persulfate?
- <u>Design</u>: Is there sufficient oxidant mass to react with non-target demand and the contaminant mass?
 - Safety factors
- <u>Application</u>: How will the persulfate chemistry establish contact with the contamination in the subsurface?
- <u>Monitoring Program</u>: Designed to answer key questions regarding the persulfate application

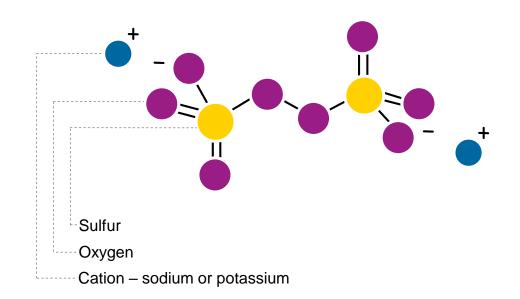
How to use data that is commonly collected to better understand the application and site



Presentation Outline

• The Persulfate "Fingerprint"/Signature

Understanding How Persulfate is Applied


- Key Scenarios on how this can be used
 - Successful application
 - Underdosing (rebound)
 - Recontamination from inflowing groundwater
 Poor distribution

Persulfate Composition / Breakdown Products

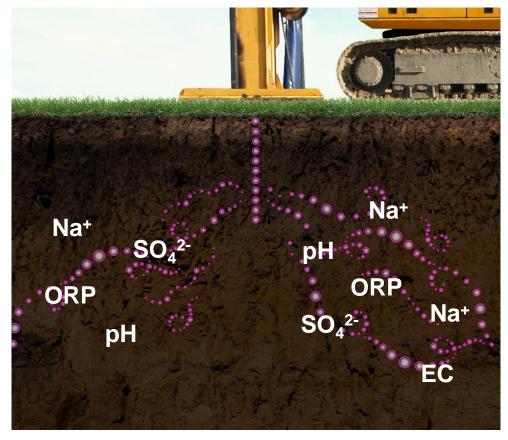
- Two types of persulfate commonly used in environmental applications:
 - Klozur SP Sodium Persulfate
 - Sodium and sulfate residuals
 - Klozur KP Potassium Persulfate
 - Potassium and sulfate residuals
- Na⁺ and K⁺ typically conservative and stays in solution:
 Assess distribution, migration and flow paths
- Sulfate can transform:
 - Precipitate to form minerals (e.g., calcium sulfate)
 - Reduce to form sulfide (~ -150 mV to ~ -200 mV)

	Klozur [®] SP Na ₂ S ₂ O ₈	Klozur [®] KP K ₂ S ₂ O ₈
Sodium	19%	-
Potassium	-	29%
Sulfate	81%	71%

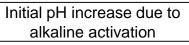
Persulfate Residuals = Both <u>Active</u> and <u>Inactive</u> (spent) persulfate

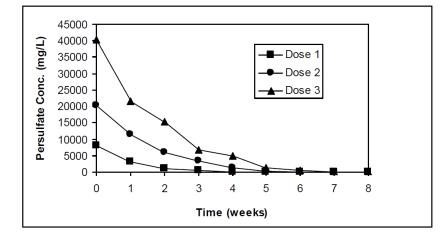
Activators also have residuals

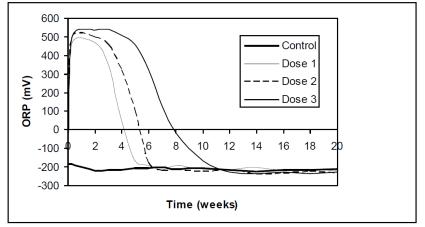
- Difference between Active and Inactive (spent) persulfate
 - -Active persulfate used for chemical oxidation
 - -Inactive persulfate has been consumed
 - Solution can have all the same characteristics except for active persulfate

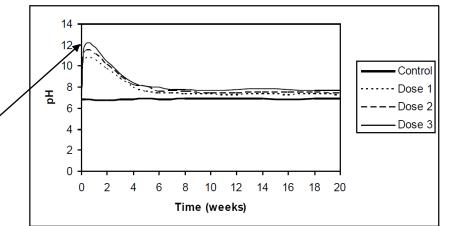

Persulfate activators may also add to fingerprint: NaOH – 58% Na⁺ Ca(OH)₂ – 54% Ca²⁺

Klozur[®] Persulfate "Fingerprint" or "Signature"

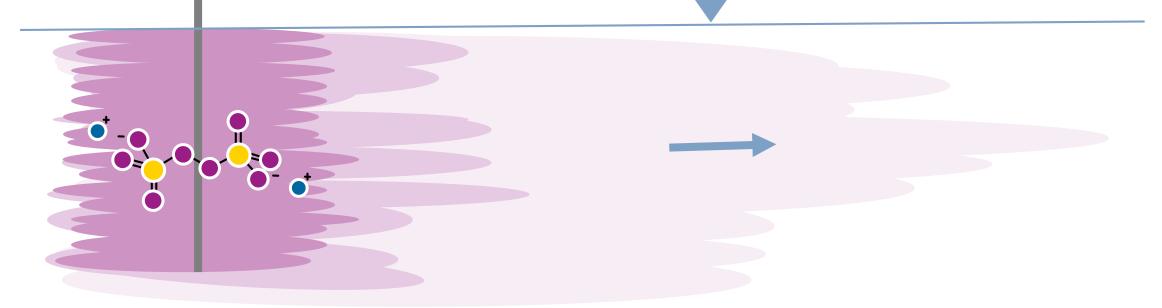

- Active reagent solution = Quantified active persulfate
- Reagent solution geochemical parameters:
 - Residual ions result in increased Electrical Conductivity
 - Klozur[®] caustic (25% NaOH or hydrated lime) should increase pH
 - In absence of Klozur[®] caustic, Klozur[®] Persulfate should decrease pH
 - Klozur[®] Persulfate should increase **ORP**
 - Analytical
 - Sodium/potassium and sulfate can be directly measured
 - Ratio of sodium/potassium to sulfate changes if sulfate is not conservative






Key Persulfate Geochemical Indicators

- Electric conductivity (EC) increases in response to persulfate and its breakdown products
- **ORP** elevated while persulfate still active.
- **pH** persulfate releases sulfuric acid as it decomposes → pH decreases:
 - Extent of pH effect depends on the buffering capacity of the soil and activation chemistry employed.
 - Alkaline activation: Initial increase in pH due to addition of base activator followed by gradual decrease as the persulfate reacts.



Direct Zone of Influence

Direct zone of influence : Immediate increase in persulfate, Na⁺, EC & sulfate

8

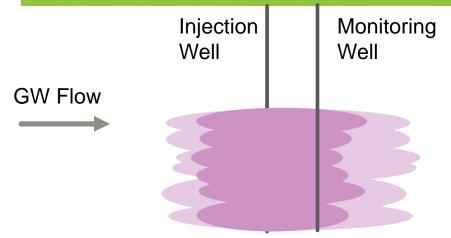
Indirect zone of influence:

Delayed increase → persulfate & breakdown products migrated into area Over time: <u>No active persulfate</u> Geochemical signature Disappearance of chemical footprint (EC, Na/K) over time → untreated groundwater is migrating into the area

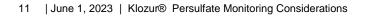
How Can the Sodium Persulfate Fingerprint be Used

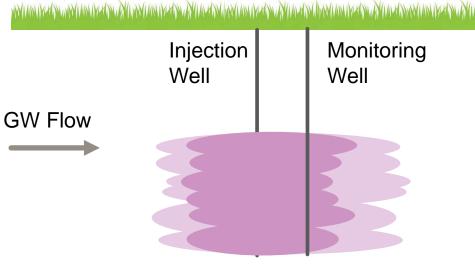
ISCO-ISS being applied by Arkil in Sweden

Geochemical data can help evaluate:


- Reagent distribution
- Reagent longevity
- Residence time of reagents within the target area
- Recontamination vs. rebound
- Potential for secondary treatment methods such as anaerobic oxidation

Understanding Reagent Distribution


- Reagent solution:
 - Geochemical parameters
 - Conductivity
 - pH
 - ORP
 - Sodium/sulfate (if monitored)
- Active reagent
 - Persulfate
- Contaminant concentrations

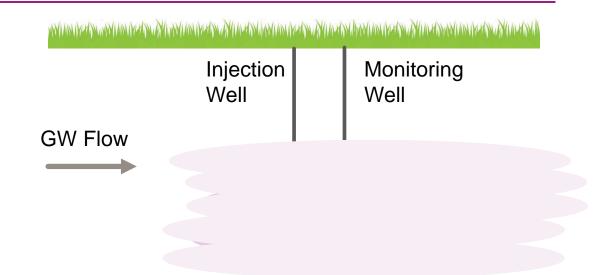

Manuser and the second second

- Residual Persulfate: >50% of pore volume concentration
- Conductivity: 2 to 3 order of magnitude increase over background
- ORP: 300 mV to 600 mV
- pH: If alkaline activated pH should be >10.5 while persulfate is present
- Sodium/Potassium and Sulfate: Proportional to pore concentration
 - Sodium Persulfate: 19% sodium and 81% sulfate
 - Potassium Persulfate: 29% potassium and 71% sulfate

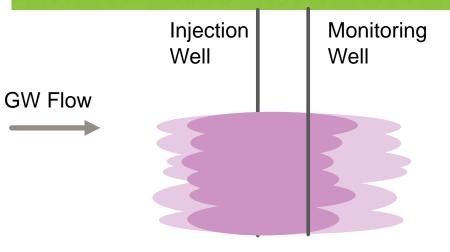
Scenario 1 Continued: Estimating Persulfate based on Residuals

- Injection concentration: 150 g/L
 - Expected residuals from injection solution:
 - Sodium: 150 g/L * 0.19 = 28,500 mg/L
 - Sulfate: 150 g/L * 0.81 = 121,500 mg/L
- Injection volume as a percent of total pore volume: 40%
 - Target concentration in total pore volume: 150 * 0.4 = 60 g/L
 - Expected residuals from injection solution:
 - Sodium: 60 g/L * ~0.19 = ~11,400 mg/L
 - Sulfate: 60 g/L * ~0.81 = ~48,600 mg/L

Evonik recommends minimum of: 10 g/L in a pore volume for petroleum hydrocarbons; and, 20 g/L persulfate for oxidized contaminants needing the reductive pathway



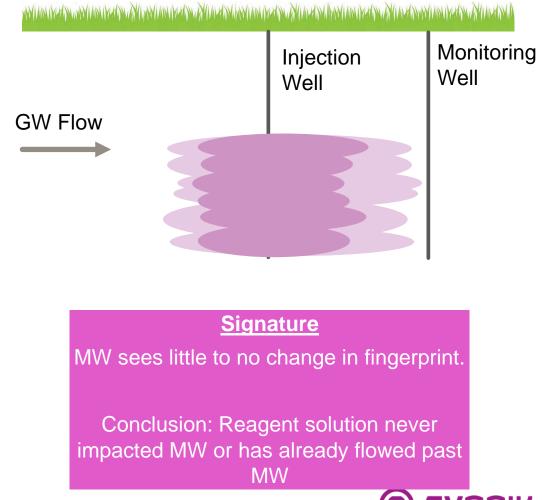
Scenario 2: Longevity of Active Persulfate


- All reagent solution:
 - Conductivity, sodium/potassium, sulfate, ORP, etc
- Active reagent solution
 - Concentrations of persulfate (>1-5 g/L preferred)

Top Scenario: <u>Persulfate reacted in place.</u> Indirect parameters stay elevated but persulfate not-detected

Bottom Scenario: Injection solution migration. Indirect and persulfate concentrations decrease as injectate migrates downgradient and is replaced with upgradient groundwater

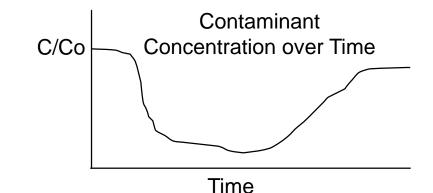
WINDOW DOWN WINDOW W



- Persulfate decomposing in target zone is preferred.
- Persulfate migrating out of treatment zone indicates limited contact time and may want to make adjustments:
 - More aggressive activation method
 - Increase concentrations of iron-chelate
 - Hydrogen peroxide
 - Higher pH
 - Flow down strategy (moving injection area upgradient)
 - Use solid state persulfate such as Klozur® KP (potassium persulfate)

Scenario 3: No Observed Change At Monitoring Well

- Contaminant mass reduction is not typical for monitoring locations that never observed signature
 - Insufficient injection volume
 - ~50 to 100% of an effective pore volume is recommended
 - Physical impediment between MW and IW
 - Preferential flow path led reagents away from MW


If contaminant concentrations rebounds after the persulfate has been spent, geochemical data can help distinguish between a true rebound vs recontamination from inflowing groundwater:

True Rebound:

 Contaminant partitions back into groundwater from soils → sorbed concentrations remaining

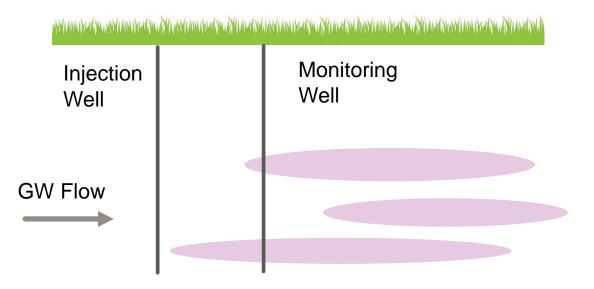
Recontamination:

 Untreated, contaminated groundwater migrates back into treatment area



EC and Sodium can Help Distinguish between Rebound vs. Recontamination

<u>True Rebound</u> <u>– Repartitioning from Soils</u>


Conductivity, sodium/potassium, etc stay similar to peak (no influx of fresh GW) while contaminant concentration increase

when he down when he

Possible Recontamination from Inflowing Groundwater

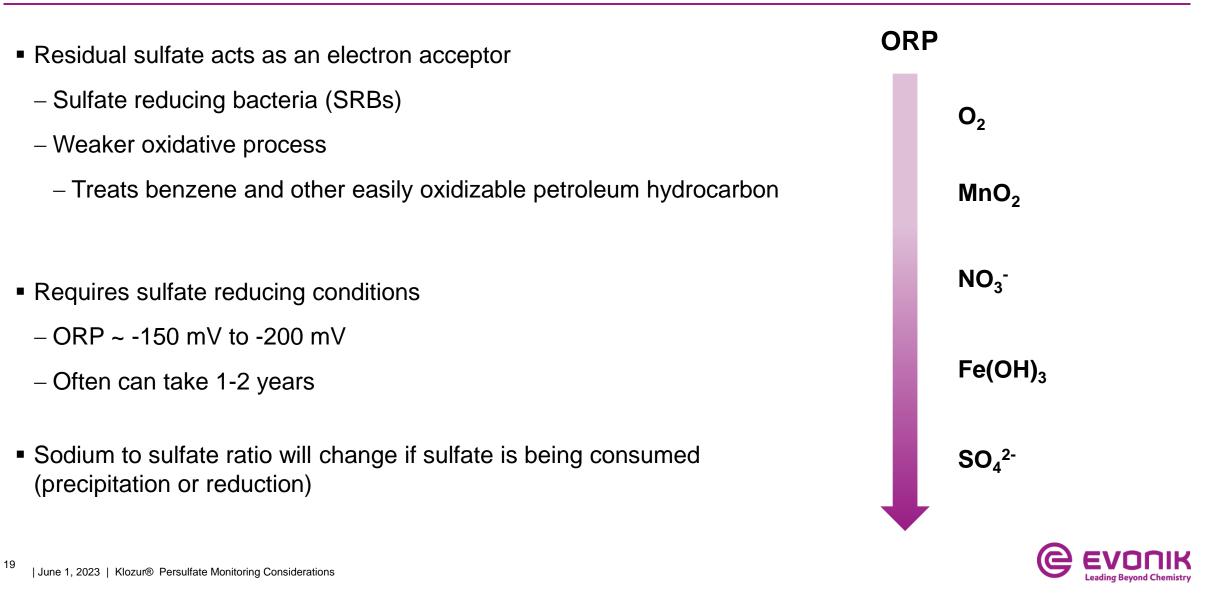
The disappearance of a geochemical footprint (EC & Na⁺/K⁺) suggests that new, untreated groundwater migrated into the area

Rebound scenario:

- Indicates an insufficient dose:
 - Sorbed mass / non target demand not fully accounted for?

– Adjust dose

- Distribution issues? Didn't receive intended dose?
 - Application method may need to be modified


Recontamination scenario:

- May be indicative of upgradient contaminant source zone that requires treatment
- Common in pilot tests:
 - Consider residence time and GW flow velocities

Scenario 5: Potential for Anaerobic Oxidation / Sulfate Reduction

Likely Anaerobic Oxidation following a Klozur[®] Persulfate Application

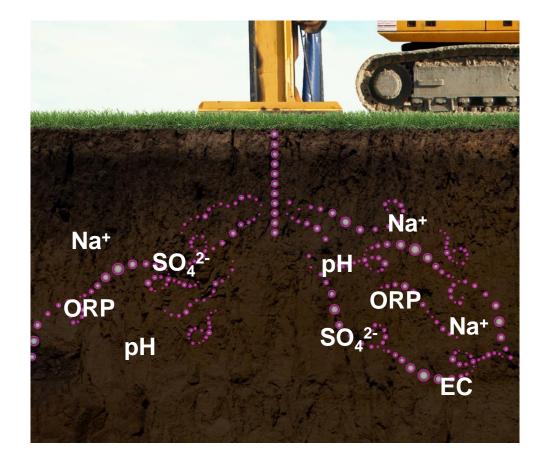
Sampling Event (Months)	BTEX (ug/L)	Nap (ug/L)	SP (g/L)	ORP (mV)	Sulfide (mg/L)	Sulfate (mg/L)
Baseline	3,000	170	0	-100	0	0
Application			Up to 140	Up to 350		
6	500	30		-120	1.2	8,500
9	300	20		-140	2.8	5,000
12	180	15		-110	0	4,000

- Alkaline activated persulfate application in NYC
- Remedial Goals Met
- Site Closed
- No rebound was observed

Potential Monitoring Program

	Baseline Monitoring	Application Monitoring	Distribution Monitoring	Performance Monitoring
	To set a baseline to compare against	During application	Immediately post application	Typically, 4-10 weeks post application
Contaminants	x			x
Fraction Organic Carbon, foc	x			x
Persulfate		x	х	Х
Sodium/Potassium/Activator Ions	x		x	х
Sulfate	X		X	X
Electric Conductivity	x	x	x	х
ORP	x	x	x	х
рН	x	x	x	х
DOC	x			Х

Summary: Proper Monitoring can Support Better Site Understanding


Monitoring

- Residual persulfate
- Geochemical parameters (conductivity, ORP, and pH)
- Sodium/potassium, calcium and sulfate
 - Common cations and anion
- Dissolved organic carbon
- Total organic carbon on soil
- Contaminant concentrations

- Reagent distribution
- Aquifer flow paths and flow velocities
- Reagent longevity
- Residence time of reagents within the target area
- Recontamination vs. rebound
- Potential for secondary treatment methods such as anaerobic oxidation
- Contaminant distribution/residual hotspots

- Geochemical analyses helpful to understand an application and troubleshoot varied performance
- Can be used to gain a better understanding of the site including flow paths, flow velocities, potential for upgradient sources, hot-spots
- This detailed analysis allows modifying the remedial action plan appropriately for the next phase if needed.

Questions?

Brant Smith, P.E., Ph.D Director of Technology Persulfates | Soil and Groundwater Brant.smith@evonik.com www.evonik.com/remediation

Evonik Active Oxygens, LLC Soil & Groundwater Remediation remediation@evonik.com www.evonik.com/remediation

24 | June 1, 2023 | Klozur® Persulfate Monitoring Considerations

