

Optimizing Bioremediation of Recalcitrant Soil Contaminants in Canada's Cold Climate

RemTech East 2023

May 30 – June 1, 2023

Presented by

Jean Paré, P. Eng

Malika Bendouz, Ph.D

Presentation Agenda

- 1. About us
- 2. The Problem and The Opportunity
- 3. Sustainable Reagents for Aerobic and Anaerobic Bioremediation
 - ✓ Composition of Aerobic Terramend[®] Carbon & Terramend[®] Inorganic reagents
 - ✓ Composition of Anaerobic Daramend[®] and Daramend[®] Plus Reagents
 - ✓ Compare and Contrast with traditional fertilizer-based approach
 - ✓ Microbiology & Biochemistry during soil treatment
- 4. Bench-scale treatability approach and results
- 5. Project Snapshots
- 6. Questions & Answers

124, rue de Hambourg St-Augustin-de-Desmaures, QC G3A 0B3

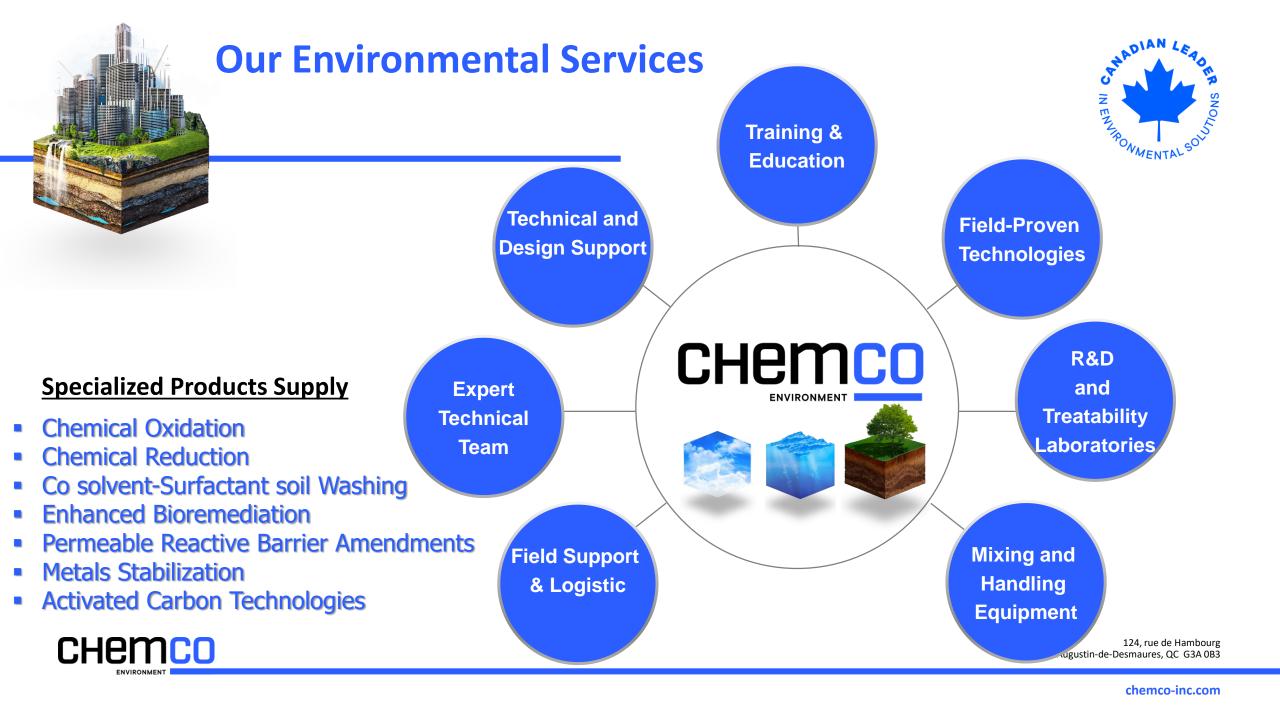
ANADIAN

Z ENURONMENT,

NEWLIRON MENTAL SOLUCION

Canadian Company founded in 1988

Production and warehouses throughout Canada


Quebec Ontario Alberta British Columbia

Sectors of activity:

About us

Industrial and Municipal Potable & Waste Water Contaminated Soil and Groundwater Air, Odours and Atmospheric Emissions (Activated Carbon, filtering medias) Process Water & Thermal Exchange Fluids (Glycols) Drilling Fluids (Oil and Gas & Diamond exploration) Aircraft De-icing Fluids

Excellence & Science through proud Suppliers & Partners

ADVANCED OXIDATION TECHNOLOGY (AOT) Since 2005

First - Establishing the fact about Canada cold climate

The Problem

- Traditional approach relies on supplying nitrogen and phosphorus at an "optimized" C:N:P ratio to support biodegradation of targeted hydrocarbons (PAHs, TPH, CP)
- Typical amendments used include commercial and agricultural fertilizers
- This approach sometime fails as inorganic nutrients are used rapidly when bioavailable, and are lost through wasteful processes including luxury consumption, denitrification, and precipitation
- The fertilizer approach doesn't address the issues of acute microbial toxicity and inadequate bioavailable water
- Soil volume could increases post-treatment due to the addition of bulking agents (e.g. wood chips)

The Opportunity

- Overcome inefficiencies in the traditional approach by using specialized soil amendments that provide nutrients, increase bioavailable water, and protect soil microorganisms from high acute toxicity.
 - Sustainable amendments capable of creating the optimal conditions for degradation
 - Capable of treating high concentrations of contaminants while overcoming acute toxicity to indigenous microbes
 - Allows balance between soil water content (bioavailable water) and the ability to maintain aerobic conditions
 - Lower overall remediation costs

124, rue de Hambourg St-Augustin-de-Desmaures, QC G3A 0B3

Terramend® Reagents for Aerobic Treatment

Attribute	Terramend [®] Carbon	Terramend® Inorganic
High Surface Area Hydrophilic Plant Fiber	\checkmark	\checkmark
<u>Slow-release</u> Organic Carbon & Nutrients (N, P, S)	\checkmark	\checkmark
Inorganic Nitrogen & Phosphorus	-	\checkmark
Emulsifying Agent	\checkmark	\checkmark
pH Balanced	\checkmark	\checkmark

- Designed to stimulate the growth of native aerobic microorganisms by providing an effective blend of organic carbon, amino acids, and organic nitrogen andphosphorus.
- Terramend Carbon treats PAHs, phthalates, and chlorophenols (including PCP).
- Terramend Inorganic treats BTEX, GRO, DRO, and TPH.

124, rue de Hambourg St-Augustin-de-Desmaures, QC G3A 0B3

Daramend® Reagents for Anaerobic Treatment

Attribute	Daramend®	Daramend [®] Plus	
High Surface Area Hydrophilic Plant Fiber	\checkmark	\checkmark	
Rapid-release Organic Carbon & Nutrients (N, P, S)	\checkmark	\checkmark	>
Emulsifying Agent	\checkmark	\checkmark	
pH Balanced	\checkmark	\checkmark	
Microscale ZVI	\checkmark	\checkmark	>
Activated Carbon	- (\checkmark)

- For the treatment of chlorinated pesticides, herbicides, organic explosives, chlorinated solvents and heavy metals.
- Creates anaerobic and reducing conditions

124, rue de Hambourg St-Augustin-de-Desmaures, QC G3A 0B3

Distinguishing Features of the Terramend® Reagents

- Prevents formation of large, dense aggregates, with anoxic centers, as often seen with other soil bioremediation technologies
- Small particle size and hydrophilic nature
 - Requires a relatively small dosage to achieve a large increase in soil water holding capacity (WHC) and bioavailable water
 - Makes the soil easier to handle
 - Reduces the need to collect and treat free water

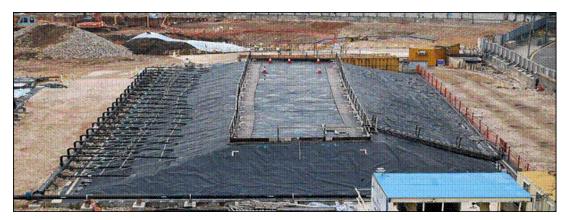
- Processed from plant materials rich in cellulose and hemicellulose, with very little lignin (unlike wood chips/saw dust that are high in lignin content)
 - Readily biodegradable
 - Does not bind contaminants in a manner that shields them from biodegradation
- Works effectively at lower dosages
 - 1% to 5% by wt. of soil as opposed to 10% to 20% by wt. of saw dust, wood chips, or other common bulking agents

chemco-inc.con

How do I use Terramend[®] Reagents?

In-situ treatment of surface soil (0 - 24" bgs)

Off-site treatment of excavated soil in mixed biopiles



On-site treatment of excavated soil in HDPE- lined biocell

On-site treatment of excavated soil in aerated biopiles

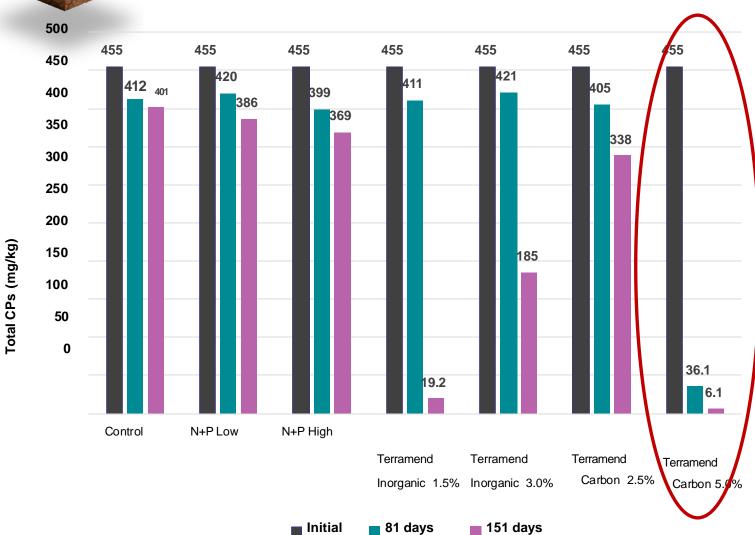
Bench-scale Treatability Testing

- ✓ Objectives
- ✓ Methodology
- ✓ Results for PCP, and Petroleum Hydrocarbons

Bench-scale Treatability Testing for PCP in Soil

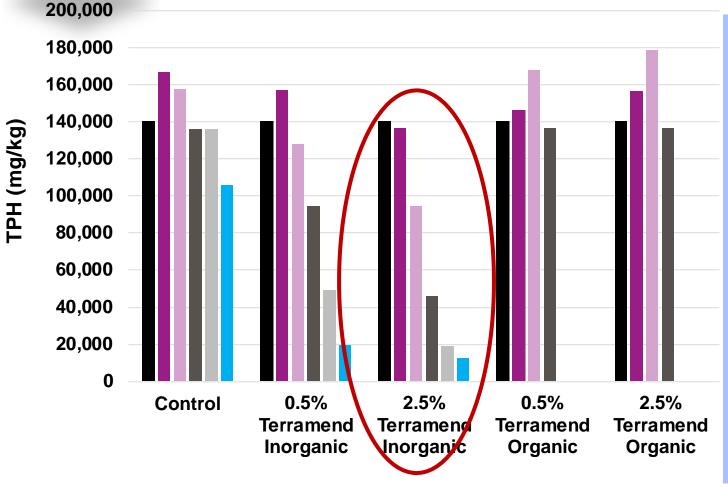
Mineralization of 14C-PCP to 14C-CO₂ Aluminum Lined 70 Car Control TC-5 PUF 60 Trap 1 L Glass Jar N+P Low 50 TI-1.5 N+P High Recovery (%) 40 25 mL Glass Test tube **—** Terramend Inorganic 1.5% 30 - 2:0 N.-TI-3 Glass Rod NaOH **—** Terramend Inorganic 3% 20 • Terramend Carbon 2.5% 10 0 Terramend Carbon 5% 50 100 150 200 0 Time (days) Soil Labelled with 14C Analog of Target Compound n of PCP Hydrophobic soil with acutely toxic COI • Doc • Cor and dosages

60% WHC


90% WHC

- Terramend[®] Carbon at 5% w/w performed best
- Poor response to both N+P nutrient treatments

Bench-scale Treatability Testing for PCP in Soil


Total Extractable Chlorinated Phenols

Strong correlation between mineralization of ¹⁴C-PCP and reduction in total soil PCP

- Treatment that supported greatest
 conversion of PCP to CO₂ also
 achieved lowest residual PCP
 concentrations
- Higher dose of slowly-released
 Terramend Carbon provided
 optimal moisture without turning
 soil anaerobic
- Inorganic N+P was ineffective regardless of dosage

Bench-scale Treatability Testing Terramend[®] Treatment of stabilized Drill Cutting

Day 64

Day 42

■ Dav 0

Dav 21

Day 98

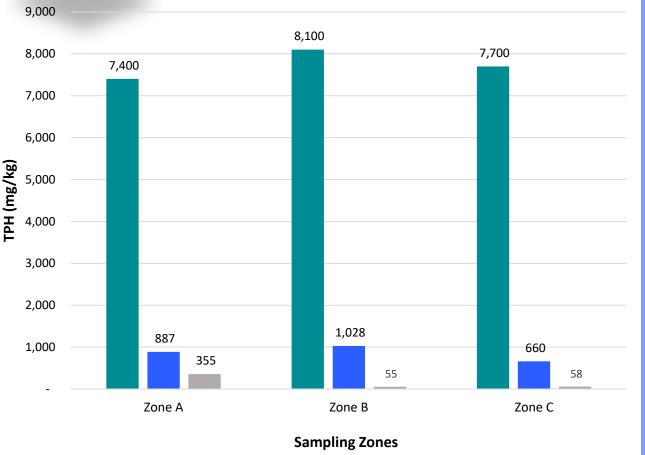
Day 141

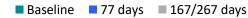
- Very high TPH drill cuttings from oil extraction
- Initial treatment with wood mulch (10% w/w) did not achieve the desired TPH reduction
- The as-received soil (pre-treated with mulch) were subjected to 141 days of Terramend[®] treatment with weekly aeration by mixing
- There was a sharp difference in response to Terramend Inorganic vs Terramend[®] Carbon.
- Most effective treatment was the higher dosage of Terramend[®] Inorganic
- TPH was reduced by 91% in response to this treatment

Project Snapshots

- 1. Terramend[®] Inorganic Treatment of Aged Hydraulic Oil and Diesel Fuel
- 2. Terramend Carbon Treatment of PAHs, PCP, and Mineral Oil TPH
- 3. Darramend[®]Treatment of Organic Explosives (TNT and RDX)

Project Snapshot #1


Terramend[®] Inorganic Ex-Situ Treatment of Hydraulic Oil & Diesel Fuel

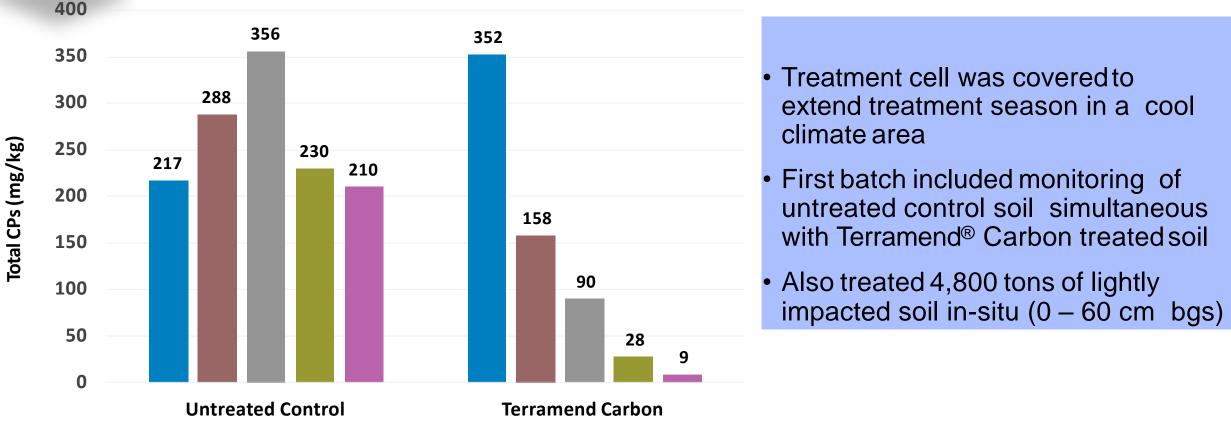

- Midwest Industrial site
- Former agricultural equipment repair facility
- Approximately 4,400 tons of soil treated on-site
- Terramend[®] reagent cost was about \$39 /ton of treated soil.

Bioremediation of Hydraulic Oil + Diesel Fuel Contaminated Soil with Terramend[®] Inorganic Reagent

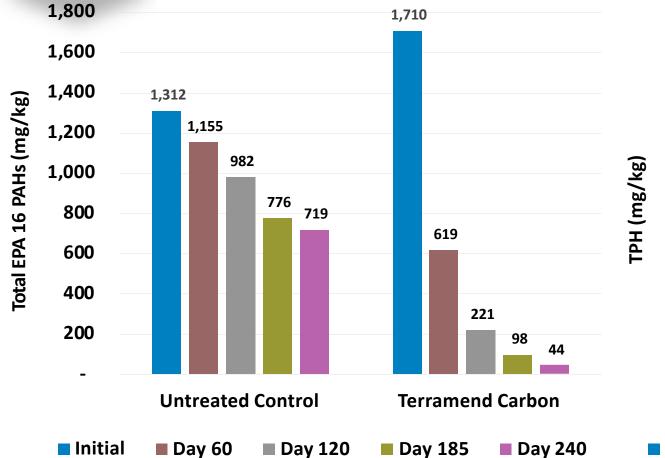
- On-Site Treatment of Industrial Soil
- 4,400 tons treated in HDPE lined biocell with soil in a layer of 24" (60 cm) thickness
- Hydraulic oil and diesel fuel $(C_{16} C_{35})$
- Calcareous sandy loam, neutral pH, low organic matter
- Terramend® Inorganic dosage of 3.0% w/w in split application (2.0% at start and 1.0% on day 90)
- Soil water content maintained near 60% WHC
- Aeration by tillage twice weekly for the first month, with tillage reduced to weekly thereafter
- Each data point represents the mean of 5 composite samples with each composite created by blending 10 grab samples from full depth of treatment

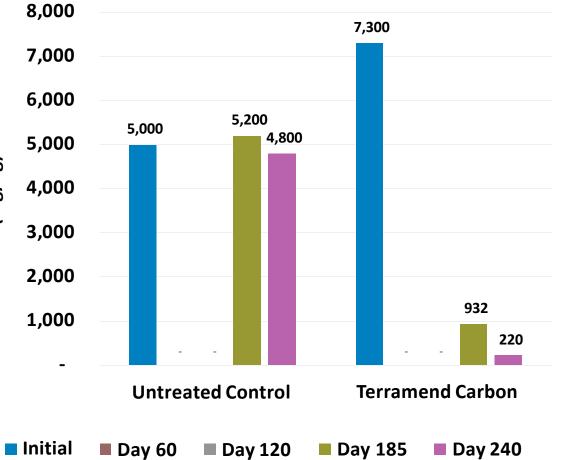
Project Snapshot #2

Terramend® Carbon


Ex-Situ Treatment of PAHs, PCP, and Petroleum Hydrocarbons

- Industrial Wood Preserving Site in Ontario
- Pressure treatment using creosote, PCP and mineral oil
- On-site treatment of excavated soil in HDPE-lined cell
- 1,200 tons/year in batch system over three years
- Terramend[®] reagent cost was about \$24 /ton of treated soil for the lightly impacted soil and about \$48/ton of treated soil for the heavily impacted soil.




Ex-Situ Bioremediation of PCP-impacted Wood Treatment Soil with Terramend[®] Carbon

Initial Day 60 Day 120 Day 185 Day 240

Treatment of PAHs and Petroleum Hydrocarbons

Project Snapshot #3

Daramend[®] Treatment of TNT and RDX in Soil Naval Weapons Station Yorktown, Yorktown VA

- 8,400 y³ soil (ca. 12,000 tons)
- Soil TNT concentrations as high as 43,000 mg/kg (average about 10,000 mg/kg)
- Treatment goals were 14 mg/kg for TNT and 5 mg/kg for RDX
- Ex Situ Treatment of soil and sediment (impacted by effluent from washout of TNT manufacturing plant)
- Engineered HDPE biocell, covered to prevent flooding and allow extended treatment season
- Completed seven batches (1,200 y³/batch)

Naval Weapons Station Yorktown TNT and RDX Concentrations before and after Daramend[®] Treatment

Sampling Zone	Batch #1		Batch #2		Batch #3		Batch #4	
	Initial	Final	Initial	Final	Initial	Final	Initial	Final
	TNT (mg/kg)			$\langle \rangle$	RDX (\wedge
1	14,000	4.1	1,520	0.6	185	0.2	10	0.6
2	7,900	6.5	2,400	10.4	230	0.4	92	1.0
3	12,000	3.1	1,560	0.5	120	0.3	40	0.5
4	17,000	7.0	8,000	1.0	500	0.3	930	0.7
5	19.0	2.6	2,210	2.7	250	12.0	150	0.5
6	5,100	5.7	15,500	11.5	185	0.5	160	0.3
7	33,000	8.8	30,200	5.7	2,500	0.4	290	0.5
8	1,300	2.9	10,900	2.0	1,000	0.1	850	0.7
9	8,400	14.0	40,400	9.5	2,500	2.9	24	0.7
10	2,800	6.8	40,900	8.8	3,430	2.4	0.8	0.5
Mean	10,151	6.2	15,359	5.3	1,090	2.0	255	0.6

- Daramend dosage of 1.0%
 w/w for first cycle and 0.5%
 w/w for subsequent cycles
- Between 7 to 10 treatment cycles
- Each treatment cycle includes addition of Daramend, tillage, irrigation, and a post irrigation reaction period of 7 – 10 days
- Soil moisture content set to 70% to 80% of WHC
- Repeated performance of +99% destruction of both TNT and RDX

should I use Terramend[®] Reagents?

- Allows In-situ or On-site Treatment of Soils Contaminated with TPH, PAH, PCP, phthalates, and certain pesticides: Ideal for both in-situ treatment of surface soil and on-site treatment of excavated soils by tilling or in mechanically-aerated biopiles.
- Substantial Cost Savings: Eliminates excavation, transportation, and off-site disposal resulting in remediation costs that are less than half of the next best alternative treatment.
- Preserve, Protect & Reuse Soil: In-situ and on-site treatment allows soil to remain onsite for site rehabilitation or used in construction.
- Sustainable Remediation: Terramend[®] reagents provide a sustainable form of remediation from the perspectives of carbon footprint and recycling of agricultural and industrial process byproducts.

> Excellent 25-year track record in many field-scale applications

Alternative to Landfill Disposal

Beneficial On-Site Reuse of Soil

Thank you for your attention !! Questions ?!?

Contact info: Jean Paré, P. ENG. M: 418-953-3480 // jean.pare@chemco-inc.com

T: 800-575-5422

