

Keys to Successful In-Situ Remedial Designs at Brownfield Sites

Elliot Maker, MSc. Northeast Technical Manager REGENESIS

Roadmap

Discuss

- Technical Approach
- Keys to Successful Remedial Design
- Design Verification Testing
- Placement Validation
- Case study
- Questions

OUR PROCESS

We support you through all phases of the remediation project including:

 ✓ Cradle to gravel support
 ✓ Single contractor
 ✓ On site / real time management
 ✓ Assured its being done right

The REGENESIS Process

DVT Design Verification Testing

FluxTracer Mass Flux Vertical Profiling

Design Revision Placement Validation

Injection *Distribution Verification*

Technical Review of Performance

Our Experience

800+ Applications Completed **100+** Applications Per Year

15,000,000+

Pounds Applied

13,000,000+ Gallons Applied

Success follows from:

The right amount of Reagent ... in the right place

What are the engineering steps we follow to achieve this?

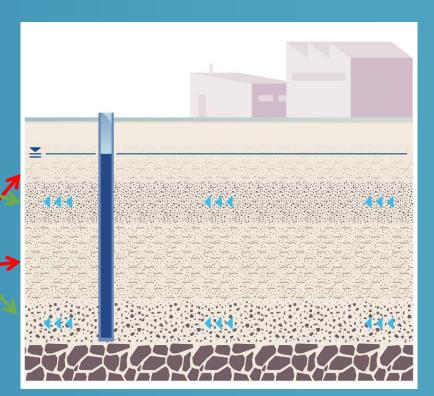
KEYS TO A SUCCESSFUL REMEDIAL DESIGN: BUILDING THE CSM

Contaminant Type and Distribution

Biogeochemistry

Site Geology and Hydrology

Fundamentals of Contaminant Distribution


- Vertical and Lateral relationships between fine- and coarse-grained units
 - Determination of vertical and lateral relationships between low and high Kh zones are critical
- Organization and Position of COC Storage Units and Transport Units
 - Fine grained units storage
 - Coarse grained units transport
- Sand Content "Plumbing"
 - How much

REGENESIS[®]

- How well sorted
- What is its positional orientation

Higher permeability zones "Freeways"

Lower permeability zones "Parking lots"

The right amount of Reagent ... in the right place

Design Verification Testing – What?

- Subsurface investigation specific to application requirements
- Separate mobilization ahead of the principal application
- Detailed stratigraphy, feasible flow rates, appropriate tooling, aquifer response to injection (clean water)
- Informs design refinement and placement optimization

Design Verification Process – Why?

Site Assessments have different objectives than DVT

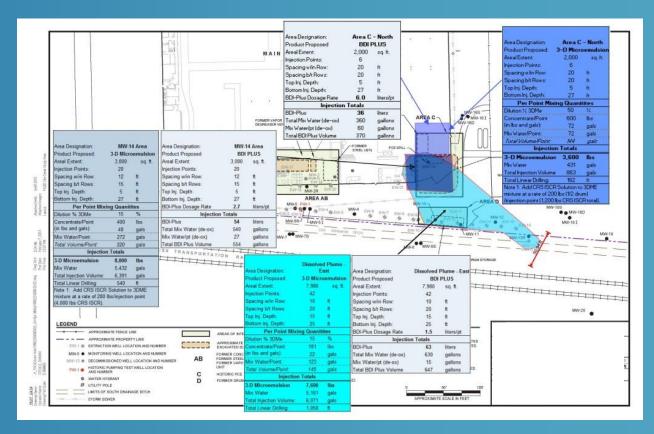
- Nature and Extent, Plume Boundaries
- Liability and Risk, Sensitive Receptors
- Delineation for risk ≠ Delieation for Remediation

DVT improves remedial outcome by increasing site resolution :

• Focusing on identifying position of COC mass and high flux zones

-Emphasis on identification of principal impacted units

-Provides greater reagent-COC contact = improved performance



DESIGN VERIFICATION PROCESS - PURPOSE

Assists Designer in:

- ID Technical Blind Spots
 - Vertical Profiling
- Calibrate Reagent Design
 - Dose/Volume
- Calibrate Treatment Zones
 Accommodation Rates and Volumes
 - ID Hydraulic Limitations

Design Verification: Tools Box

Continuous Soil Core Logging

Land Science

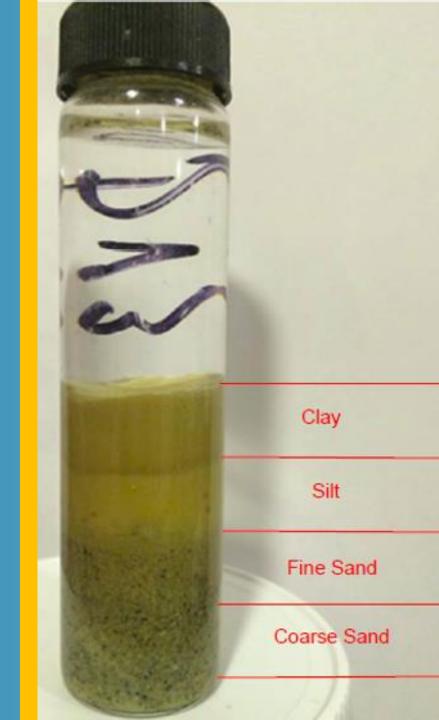
- Soil Contaminant Analysis
- Settling Tubes
- Clear Water Injection
- FluxTracer

REGENESIS[®]

Continuous Core Logging

• Physical Characteristics

- Moisture content
- Contaminant: e.g. odor, staining, PID
- Grain Size:
 - % clay- silt-
 - % fine- medium- coarse- sand/gravel
- Gradation:


REGENESIS

- coarsening upward vs. fining upward
- Soil contaminant analysis:
 - Identify contaminant concentrations within flow pathways

Design Verification: Soil Settling Tubes

- Field Technique provides semi-quantitative data to trained Field Geologist
- Visual Determination
 - Sand, Silt, Clay
 - Soil particle size %
 - Sand: grain size and sorting
- Simple Rapid Reliable
- Decreases Subjectivity
 - e.g. Silty sand silty clayey sand etc.
- High density, 1 foot vertical interval

Design Verification: Clear water injection test

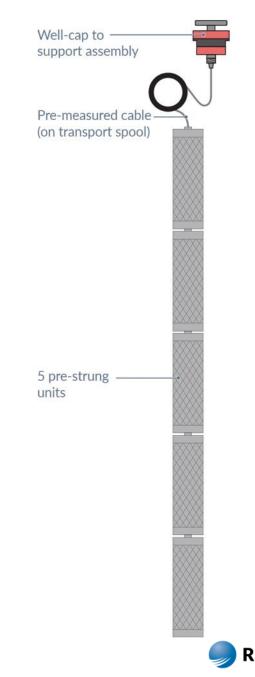
- Documents acceptance rates and volumes
 - Vertical TTZ's interval
- Assists in application decisions
 - Direct Push Injection
 - Top-down vs Bottom-up

Land Science

• Injection wells

REGENESIS[®]

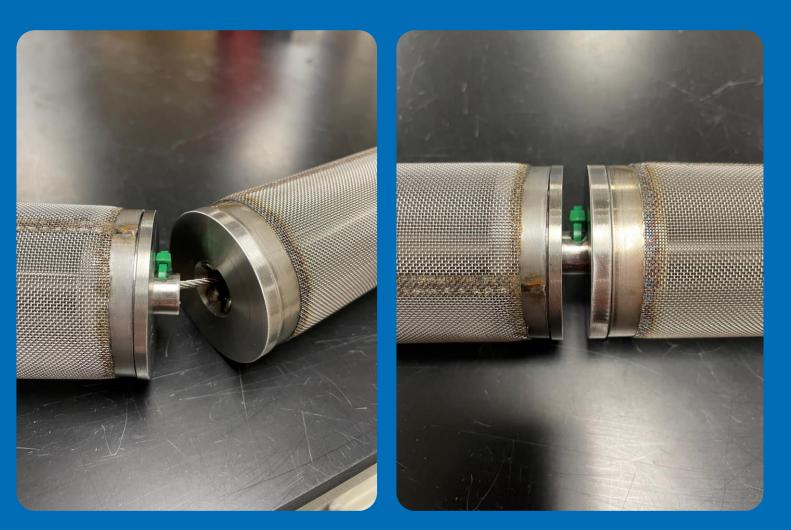
- Screened Intervals
- Data collected often differs greatly from the estimated Kh based volume



Key Benefits:

- Collects information to aid in site characterization and remedial designs
- Vertically delineates contaminant mass flux and groundwater speed within an existing monitoring well
- Better site characterization and more specific design choices lead to better remedial outcomes
- Units for specific wells arrive pre-assembled and ready to deploy

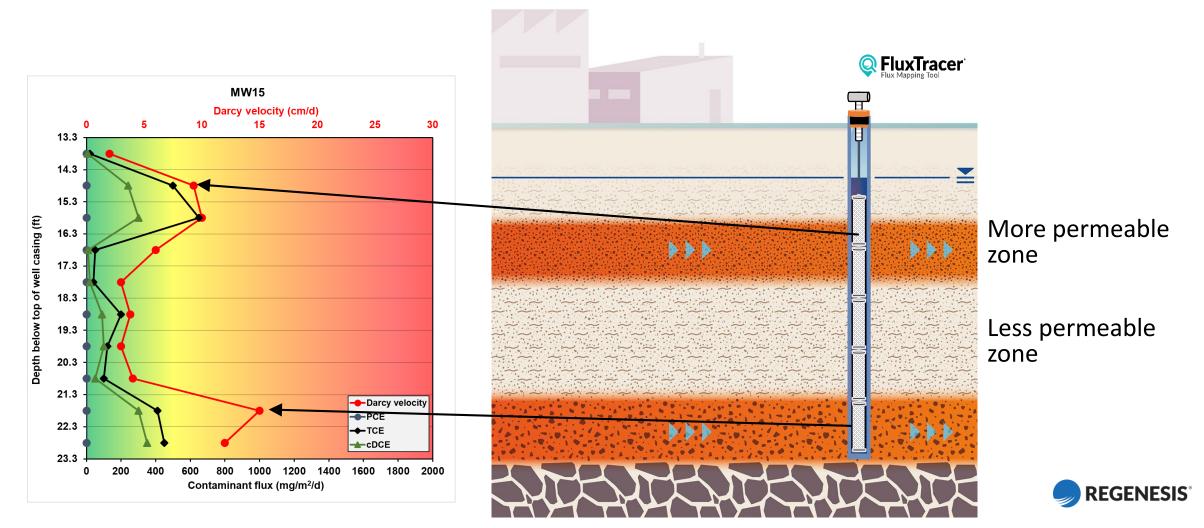
How it Works:


- FluxTracer is deployed for two weeks and retrieved
- Alcohol tracers are washed out contaminants are sorbed
- Device is sent back to REGENESIS for sample analysis
- Results are used to provide a report containing useful information such as contaminant mass flux and groundwater Darcy flux

FluxTracer Construction

- All stainless-steel construction
- Sealed and tamper-resistant
- Self-centering
- Junctions allow "train car" movement

Comparing a start of the


Na

Pre-cut wire spool FluxTracer unfolded

Flux Determination- Passive Methods

Resulting data identifies zones of varying flux

Data Reporting

Report elements

		cer
	Site Name	ABC Factory
	Location	MW15
	Client	REGENESIS
	Contact	John S
	Well ID	MW15
	Report prepared by:	Josh Moreno
	Deployment length (ft)	23.25
	Date deployed	10/27/2111:30
_	Date recovered	11/10/21 14:30

Darcy velocity

(cm/day)

2.0 9.3

10.0

6.0

3.0

3.8

3.0

4.0

15.0

12.0

PCE (ug/L)

N/A

PCE

alm2lda

ND ND

ND

ND

ND

ND

ND

ND

ND

ND

TCE (ug/L)

1000

5380 6500

830

1330

5260

4000

2500

2730

3750

TCE

alm2lda

20 500

650

50

40

200

120

100

410

450

cDCE (ug/L)

400

2580 3000

170

670

2370

3330

1250

2000

2920

Flux Tracer Report

TABLE 1 Darcy velocity and contaminant fluxes

Depth below top of well

casing (ft)

13.8

14.8

15.8

16.8

17.8

18.8

19.8

20.8

21.8 22.8

TABLE 2 Flux-derived concentrations Depth below top of well

casing (ft)

13.8

14.8

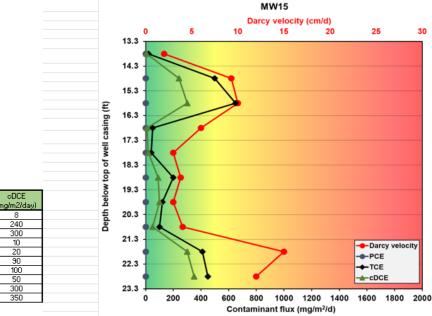
15.8

16.8

17.8

18.8

19.8


20.8

21.8 22.8

Darcy velocity and contaminant fluxes

TABLE 1

Depth below top of well casing (ft)	Darcy velocity (cm/day)	PCE (mg/m2/day)	TCE (mg/m2/day)	cDCE (mg/m2/day)
13.8	2.0	ND	20	8
14.8	9.3	ND	500	240
15.8	10.0	ND	650	300
16.8	6.0	ND	50	10
17.8	3.0	ND	40	20
18.8	3.8	ND	200	90
19.8	3.0	ND	120	100
20.8	4.0	ND	100	50
21.8	15.0	ND	410	300
22.8	12.0	ND	450	350

30

Data Reporting

Report elements

TABLE 2

Flux-derived concentrations

Depth below top of well casing (ft)	PCE (ug/L)	TCE (ug/L)	cDCE (ug/L)
13.8	N/A	1000	400
14.8	N/A	5380	2580
15.8	N/A	6500	3000
16.8	N/A	830	170
17.8	N/A	1330	670
18.8	N/A	5260	2370
19.8	N/A	4000	3330
20.8	N/A	2500	1250
21.8	N/A	2730	2000
22.8	N/A	3750	2920

Flux Tracer Report

Site Name	ABC Factory
Location	MW15
Client	REGENESIS
Contact	John S
Well ID	MW15
Report prepared by:	Josh Moreno
Deployment length (ft)	23.25
Date deployed	10/27/2111:30
Date recovered	11/10/21 14:30

TABLE 1

lepth below top of well	Darcy velocity	PCE	TCE	oDCE
casing (ft)	(cm/day)	(mg/m2/day)	(mg/m2/day)	(mg/m2/day)
13.8	2.0	ND	20	8
14.8	9.3	ND	500	240
15.8	10.0	ND	650	300
16.8	6.0	ND	50	10
17.8	3.0	ND	40	20
18.8	3.8	ND	200	90
19.8	3.0	ND	120	100
20.8	4.0	ND	100	50
21.8	15.0	ND	410	300
22.8	12.0	ND	450	350

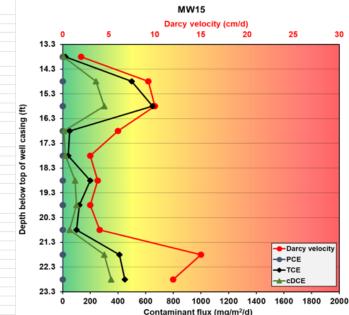
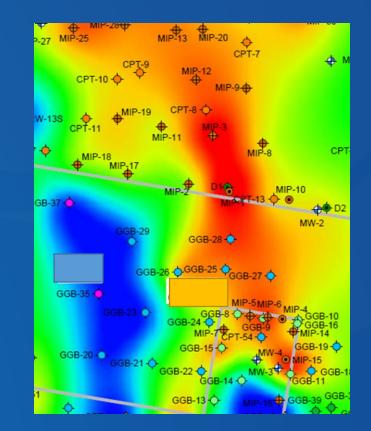


TABLE 2

Flux-derived concentrations			
Depth below top of well casing (ft)	PCE (ug/L)	TCE (ug/L)	cDCE (ug/L)
13.8	N/A	1000	400
14.8	N/A	5380	2580
15.8	N/A	6500	3000
16.8	N/A	830	170
17.8	N/A	1330	670
18.8	N/A	5260	2370
19.8	N/A	4000	3330
20.8	N/A	2500	1250
21.8	N/A	2730	2000
22.8	N/A	3750	2920

			001	rearring	int nux	(ing/in	/ u /		

Brownfield's Redevelopment Site



The Problem

Contaminants	Concentrations	Treatment Area	Volume of Impacted Soil/GW
Chlorinated Solvents	27,000 µg/L	68,000 Square Feet	50,000 Cubic Yards

Additional Information:

- Very high contaminant concentrations
- Soil vapor issue contributing to contamination and cleanup criteria
- Two main treatment areas;
 - source and main plume body

The Solution - Pre-DVT

Contaminants	Concentrations	W2-A1/W2-A2
PCE, TCE, DCE, VC	 Main Plume: up to 200 µg/L Source Area: 1,400 – 27,000 µg/L 	W-13D -13S W1-A1/W1-A2 W1-A1/W1-A2
Soil	Groundwater	TTT Martin Martin Martin Mea
Heterogeneous sand and gravel aquifer	 Depth to GW: ~8-10 feet bgs. Seepage Velocity: >1,000 feet per year (estimated prior to PFM deployment) 	W5-A1W5-A2 W4-A10W4-A2 W3-ATTW3-A2 W3-ATTW3-A2 W3-ATTW3-A2 W3-ATTW3-A2 W3-ATTW3-A2
Source Area	Plume Area	MW-5R/MW-5D
Excavation, Injection of 3DME, SM-ZVI, and BDI	 Multi-Barrier PlumeStop and SM-ZVI 	Source Treatment Area

Design Verification Program

DVT Item	Completed by	Purpose
Continuous Soil Cores/Soil Settling Tubes	REGENESIS	Identify transmissive zones through grain size analysis
Performance Monitoring Well Installation	PES	Track performance and demonstrate progress toward remedial goals
Passive Flux Study	PES Field Deployment and Collection REGENESIS Flux analysis and Predictive Models	Define contaminant flux to determine product dosing and optimize treatment row placement needed to meet remedial timeframes
Clear Water Injection Test	REGENESIS and PES	Assess optimal product injection radius, and define remediation injection timeframe

Design Verification Program

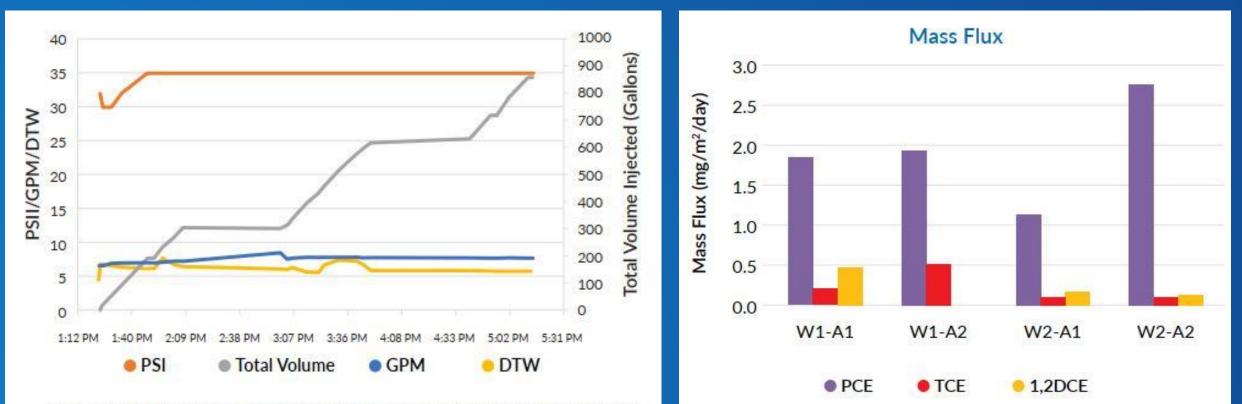


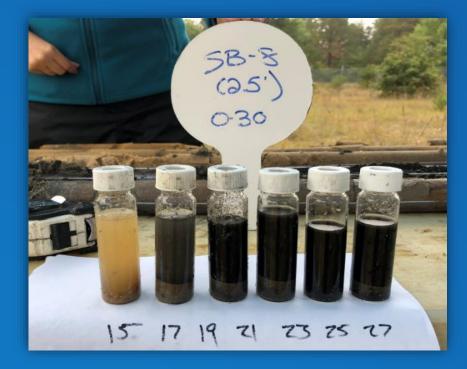
Chart showing pumping rate, injection pressures, depth to water and total volume injected.

Chart Depicts CVOC Mass Flux at two well pairs, W1 and W2

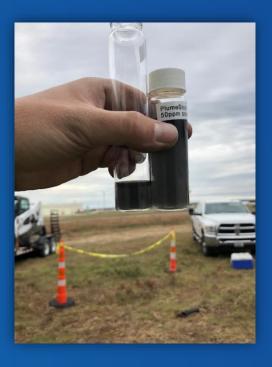
Post-DVT Design Changes

Slightly tighter injection spacing for more robust barrier

- Decrease injection volume for desired ROI less field time
- Ground water velocity from changed from ~1,000 to ~300 ft/yr
- Focused target zone from 8 to 30 ft vs. 10 to 30 ft cost savings
- Reallocated PlumeStop to areas to target the faster mass flux
- Switch destruction product to SM-ZVI for greater longevity and performance


CAC-Distribution Confirmation

Bottom



Distribution Confirmation

Soil Vial Shake Test

MW-29c

Field Test Kit

Application Plan

28	208,560	158	10-30
Field Days	Gallons of PlumeStop and SM-ZVI Applied	Direct-Push Injection Points (Spaced 6' Apart)	Feet Below Ground Surface Total Treatment Zone (Narrowed as a result of DVT)

Each monitoring well shown is approximately 16 feet to the nearest Barrier

W2-A1 (5-20)	9/30/2019	1/6/2020	3/2/2020	5/7/2020	9/17/2020
PCE	77/88	54/53	230	38	22
TCE	34/38	22 / 21	76	15	11
cis-1,2-DCE	55/60	32 / 33	77	12	8.6
trans-1,2-DCE	2.4/2.8	1.6 / 1.6	3.0	0.7	0.6
VC	1.8/2.1	<0.5/<0.5	<1.7	<0.5	<0.5
W2-A2 (20-30)	9/30/2019	1/6/2020	3/2/2020	5/6/2020	9/16/2020
PCE	140	<0.5	0.5	<0.5	<0.5
TCE	23	<0.5	<0.5	<0.5	<0.5
cis-1,2-DCE	35	<0.5	1.4	2.7	1.9
VC	1.3	<0.5	<0.5	<0.5	<0.5

W6-A1 (8.5-23.5)	9/30/2019	1/6/2020	3/3/2020	5/7/2020	9/17/2020
PCE	74	24	23	9.4	1.6
TCE	23	8.1	7.5	7.1	3.2
cis-1,2-DCE	28	15	7.5	9.2	14
trans-1,2-DCE	1.0	0.6	0.5	<0.5	0.6
VC	1.6	0.9	1.6	1.3	1.7
W6-A2 (25-30)	9/30/2019	1/6/2020	3/3/2020	5/6/2020	9/16/2020
PCE	200	0.8 / 0.6	<0.5	<0.5/<0.5	<0.5
TCE	70	<0.5/<0.5	<0.5	<0.5/<0.5	<0.5
cis-1,2-DCE	21	<0.5/<0.5	0.5	<0.5/<0.5	1.2

W2-A1/W2-A2

Barrier 5 V (IP-119 through IP-158)

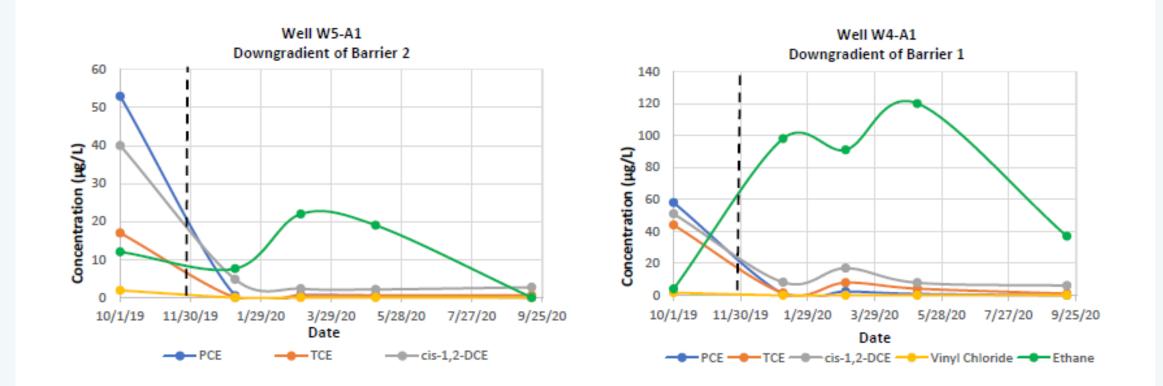
MW-1 🕀

RW-13D

RW-135

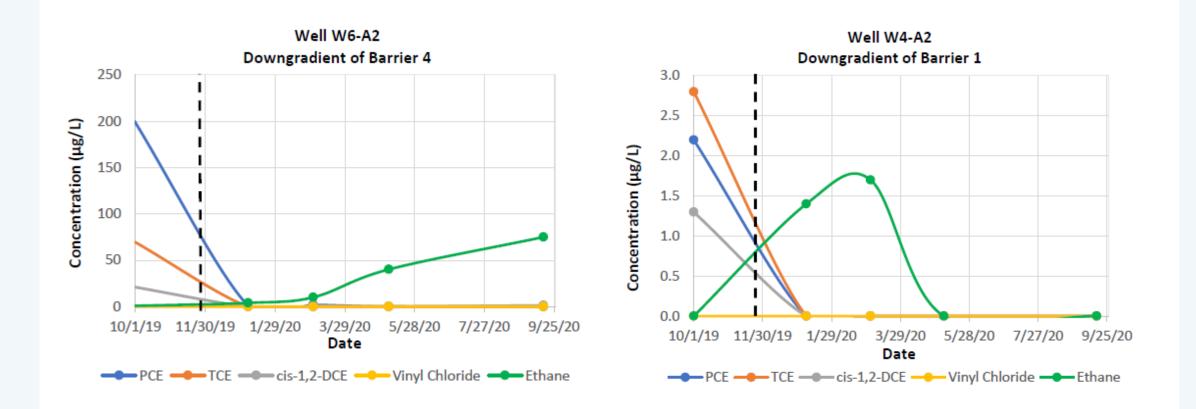
W6-A1/W6-A2

Barrier 4 (IP-83 through IP-118)


.

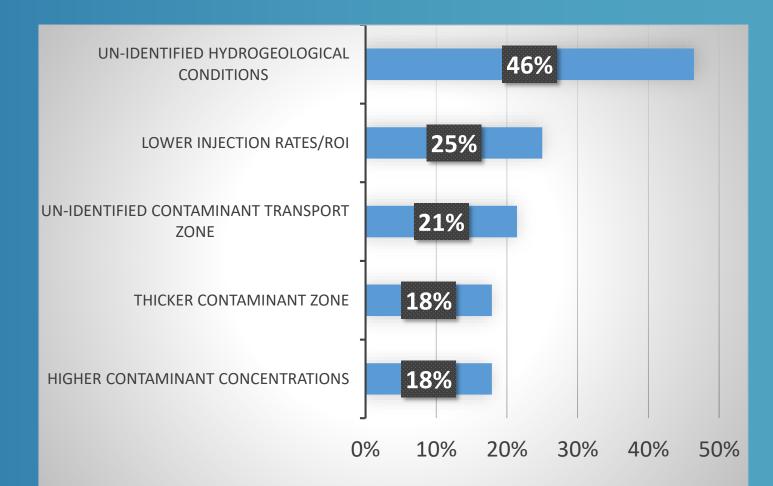
W1-A1/W1-A2

MW-8


W1-A1 (6-21) 10/1/2019 1/6/2020 3/3/2020 5/7/2020 9/17/2020 150 7.6 12/12 5.4 3.2 PCE 4.9 9.4/9.1 4.6 4.5 TCE 51 cis-1,2-DCE 16 20/21 22 27 89 trans-1,2-DCE 0.5/<0.5 <0.5 0.7 2.4 0.6 VC 5.6 1.9 3.5 / 3.2 2.3 1.7 W1-A2 (21-31) 10/1/2019 1/6/2020 3/3/2020 5/6/2020 9/16/2020 PCE <0.5 <0.5 12 1.0 1.1 TCE <0.5 0.6 1.7 8.2 0.7 cis-1,2-DCE 76 1.5 2.2 <0.5 3.1 trans-1,2-DCE 5.4 <0.5 <0.5 <0.5 <0.5 0.8 <0.5 <0.5 VC <0.5 <0.5

Results Upper Zone

Results Lower Zone


So What Have We Learned?

Design Verification Testing

What's the outcome?

- Analysis of 43 DVT investigations
- ~80% of tests found unanticipated results (technical blind spots)
- 62% of preliminary designs were modified / refined
- Most changes were cost-neutral

🧼 REGENESIS

Success follows from:

The right amount of Reagent ...in the right place

good tools + good processes \rightarrow engineering control

because success isn't random

Thank You!

Elliot Maker, MSc. Northeast Technical Manager REGENESIS

emaker@regenesis.com

