Dewatering and containment of heavy-metalcontaminated sediments with geotextile containers and polymers. Developing and validating system performance and design.

RemTech East 2023

Presented by Tyler Anderson

Agenda:

- 1) Technology overview
- 2) Bench testing
- 3) On-site pilot testing
- 4) Full-scale systems
- 5) Filtrate management
- 6) Dewatered materials management
- Results and application examples

Bishop Solids Management Solution

Sishopwater

+1 (343)-361-0463

Onsite dewatering methods

Mechanical dewatering

- Centrifuge or belt press
- Offers automated operation
- Compact footprint
- Energy intensive
- Limited rate of sludge feed
- Dewatered solids must be continually hauled away

Semi-passive dewatering

- Geotube dewaters as quickly as solids are pumped in
- Offers automated operation
- Energy efficient, gravity-based process
- Less costly
- Solids can remain onsite for extended periods and dewatering continues
- Customizable to suit available space

Sludge samples and Rapid Dewatering Test (RDT)

- 20L pail filled with samples from multiple points
- Sludge testing determines:
 - o Optimal polymer
 - Sediment density
 - Total estimated volume
 - Sediment dewaterability
 - Filtrate quality
 - o Estimated dewatered volume
 - o Contaminants of concern

Project results show significant retention

YCBo8 composite sample						
Raw slurry solids concentration	5.88%					
Attained solids after 24 hours	24.35%					
Filtrate TSS	36 mg/L					
Filtrate arsenic	6.03 mg/L					

Influent arsenic concentration was as high as 9,800 mg/L

WWW.BISHOPWATER.CA

Geotube Dewatering Test (GDT)

- Gravity and pressurized tests
- Simulates performance of full-size Geotube
- Accepts much larger volume of material

WWW.BISHOPWATER.CA

GDT results

	Dry Weight 1:1	Dry Weight 1:2	Attained solids 24 hours	TSS filtrate mg/L	As Filtrate mg/L	As of Raw diluted mg/L
Red tailing	14.8%	6.28%	31.7%	28	.715	9,410
Peat/Red Mud	10.82%	5.38%	23.4%	70	.471	8,500
Peat/Organic	6.26%	2.66%	26.0%	12	.210	600
Clay/Peat/Red Mud	15.6%	6.88%	38%	20	.999	6,230

Pilot testing with Geotube Mobile Dewatering System (MDS)

WWW.BISHOPWATER.CA

+1 (343)-361-0463

Pilot testing with Geotube Mobile Dewatering System (MDS)

VEPAS polymer system

BISHOPWATER

WWW.BISHOPWATER.CA

*** +1 (343)-361-0463**

Filtrate testing

Onsite testing of filtrate informed the design of a supplemental water treatment system

Full-scale results

Required

Attained

SISHOPWATER 💽 WWW.BIS			HOPWATER.CA	*** +1 (343)-30	51-0463		I	NFO@BISH	OPWATER	.CA	
			10/03/12	Day 1 Comp 1000 ppm FeCl ₃	17.0	7.3	4.54	0.0035	.205	.0021	.059
	Nickel 37 μg/L		10/03/12	Day 1 Comp 500 ppm FeCl ₃	17.0	8.5	8.67	0.0043	.0013	.0001	.0049
	Copper	20 μg/L	10/02/12	Day 1 Comp 500 ppm PAC	13.5	7.0	7.61	0.0136	.0191	.002	.0144
	Cobalt	49 μg/L	10/02/12	Day 1 Comp 250 ppm PAC	13.5	7.3	7.59	0.0151	.0091	.0017	.0083
	Arsenic	0.1 mg/L	10/02/12	Day 1 Comp LIME only	13.5	9.5	10.30	0.0154	.0231	.0026	.0126
	TSS	25 mg/L	10/02/12	Day 1 Comp Raw	13.5	6.1		0.3140			
	Parameter	Discharge Criteria	Sample Date	Sample Description	*Temp ^o C in the field	*pH in the field	Lab pH	Arsenic mg/L	Cobalt mg/L	Copper mg/L	Nickel mg/L

Setting up a full-scale system

SISHOPWATER

T +1 (343)-361-0463

INFO@BISHOPWATER.CA

BISHOPWATER

WWW.BISHOPWATER.CA

Geotube Capacity Estimates

Project Name:	River System
Location:	Ontario
Contact:	Owner
Date:	2020-10-10
Type of Material:	River Sediment

Input		Units
Volume	5,000	Cubic Meters
Particle Specific Gravity	1.60	
% Solids in Place	25.0%]
% Solids During Pumping	5.0%	1
Target dewatered % Solids	50%	1
% Coarse grain & sand*	0.0%]

* % Coarse grain & sand is removed from the calculation for volume reduction

due to dewatering and added back in at the end in required Geotube® volume

Production:

Pumping Rate (LPM)	2,000
Hours per Day	10.0
% Efficiency	80%

Material type:

Silts and/or Organics

Percent of Maximum Filled Capacity

80%

Output		Units
Total Volume Pumped	27,072	CM
Slurry Volume Pumped Per Day	960	CM
Bone Dry Tons Per Day	49	Tons (metric)
Total Bone Dry Tons	1,378.7	Tons (metric)
Estimated Pumping Days	28.2	Days
Estimated Dewatered Volume	2,241.4	CM
Estimated Dewatered Weight	2,757.4	Tons (metric)
Density of Dewatered Slurry	1.23	Relative Density

Estimated Geotube® Quantity:

Circumference X Pumping Height	Meters
25.91m X 2.59m	104

- Geotube Estimator (volumetric capacity requirements)
 - Geotube Simulator (filled dimensions and practical parameters)

٠

👕 +1 (343)-361-0463

Filling and consolidation

BISHOPWATER

 \oplus WWW.BISHOPWATER.CA T +1 (343)-361-0463

Onsite water treatment

Water treatment system

BISHOPWATER

1 (343)-361-0463

Results exceed discharge requirements

	Arsenic (mg/L)	Cobalt (mg/L)	Copper (mg/L)	Nickel	Tss (mg/L)	pН
Jun-15 Avg. Influent	1.22	0.026	0.014	0.024	6.38	7.67
Jul-15 Avg. Influent	1.08	0.015	0.017	0.019	2.14	8.09
Aug-15 Avg. Influent	1.29	0.020	0.031	0.022	13.62	8.13
Effluent Limit	0.1	0.049	0.02	0.037	25	6.5-8.5
Jun-15 Avg. Effluent	0.027	0.006	0.004	0.010	7.62	7.82
Jul-15 Avg. Effluent	0.032	0.003	0.005	0.007	6.64	8.09
Aug-15 Avg. Effluent	0.033	0.002	0.006	0.005	6.23	7.95

Hydrocarbon remediation

WWW.BISHOPWATER.CA

Permanent onsite containment

Sishopwater

WWW.BISHOPWATER.CA

Stacking considerations

Analysis	Parameters
Geotube® Stability Analysis	Dewatered material unit weight
	Dewatered material cohesion
	Dewatered material friction angle
	Foundation unit weight
	Foundation material cohesion
	Foundation material friction angle
	Ground water level
	Foundation geological profile - Yes/No
	Bathymetric survey (if installed in water) - Yes/No
	Saturated unit weight dewatered material
	Unit weight dewatered material
	Saturated unit weight foundation
Geotube [®] Setllement	Foundation unit weight
Analysis	Foundation geological profile - Yes/No
	Foundation material cohesion
	Foundation material friction angle
	Foundation compression index
	Foundation initial void ratio

Stability and settlement analysis

Support Name	Celer	THE	Application	Meteoral Dependent	Adaption (PPT)	100	Server Gerregels MODE	Never orientation	Jackengt	N N	Allowskie Texaie Strangth (00/ FL)	Streigh spit	Sangla (Balti)
dinge i		Occupation	Artice [Metrock]	No	842	57	Linear	Possiel to Administration	Sope free	100	4000	Constant	4500
ania tatia		Orophesie	Artice [Method 2]	No	142	57	Lines	Possiel in Reinforcement	Sope free	180	9500	Constant	4500

Material Name	Color	Unit Weight [Ibs/ ft3]	Strength Type	Cohesion (psi)	Phi (deg)	Cohesion Type	Water Surface	Ru
Foundation		102	Undrained	3045		Constant	None	0
Geotube Bottom		75.58	Mohr- Coulomb	205	10		None	۰
Geotube Internidiate		75.58	Mohr- Coulemb	84	10		None	۰
Geotube Top		56.46	Undrained	63		Constant	None	۰

BISHOPWATER

WWW.BISHOPWATER.CA

Bishop Water Technologies: Who We Are

- Bishop Water specializes in simple, reliable, low-energy solutions for solids management and nutrient removal.
- These solutions are used by municipal, industrial and agricultural clients to affordably solve water and wastewater challenges while protecting the environment.
- Our highly experienced teams provide exemplary service and work collaboratively with partners to continually enhance the performance, value and sustainability of our solutions.
- Over 10 years of growth and success. Our solutions are distributed by partners in Canada, United States, Australia and Latin America.

Renowned service and support:

- Experienced teams work closely with clients to assess needs and design appropriate solution
- Made-in-Canada systems designed to provide reliable, trouble-free operation
- Skilled field technicians efficiently and safely mobilize equipment and operate systems
- We are committed to providing responsive, effective support for the duration of the project

"We've had great communication and support from Bishop Water, not only during plant commissioning, but on an ongoing basis."

Allan Nesbit, Operator North Rustico WWRF, PEI

Questions?

Thank you!

Tyler Anderson

tyler@bishopwater.ca

1-343-361-0463 info@bishopwater.ca www.bishopwater.ca
