

Easy set-up. Expert results.

DISTINGUISHING NOISE FROM SIGNAL IN THE MEASUREMENT OF NATURAL SOURCE ZONE DEPLETION (NSZD) RATES AT PETROLEUM CONTAMINATED SITES

JULIO ZIMBRON, PH.D.

2022 REMTECH CONFERENCE BANFF, CANADA

OCTOBER 14, 2022

Background

Alternatives to Measure NSZD Rate

Method	Variants (* assu	mptions)	Basis
Concentration Gradient	**		Concentration profile fitted to diffusion-based vertical transport (Fick's law)
Surficial CO ₂ Efflux	Dynamic Closed Chamber **		Short term measurement (typically background corrected)
	Passive CO ₂ Traps	*	Long term measurement + ¹⁴ C Correction
Temperature Gradient (heat balance)	Background Corrected	***	Short term measurement of temperature gradients
	"Single Stick Method"	**	Long term measurement of temperature gradients
Compositional Change	Assumptions ¹ 1-D transport, stoichiometry ² Fitting transport parameter ³ Other	*	Uses non-biodegradable markers to track individual compound concentration changes in time

Motivation

- NSZD is an important new tool in managing LNAPL contaminated sites
- Many guidance documents describe the methods

- Guidance documents are strong on describing methodologies, and "intrinsic" limitations of the multiple methods
- Yet, direct comparisons of different methods are scarce

Intent of this talk is to discuss common pitfalls and best practices

Proprietary and Confidential Information © 2022 All Rights Reserved

NSZD Measurements what is measured vs. what happens

total signal - noise = signal

Examples of Error Sources

- Background and Motivation
- CO₂ Efflux: Background correction vs ¹⁴C correction
- CO₂ Efflux: Temporal variability
- Thermal Gradient: Background correction vs long term measurement (single stick method)
- Summary and Conclusions

Case Study 1 CO₂ Efflux, background correction vs ¹⁴C

Comparison of Radiocarbon- and Background Location-Corrections on Soil-Gas CO₂ Flux-Based NSZD Rate Measurements at Petroleum Impacted Sites

by Julio A. Zimbron

Abstract

The measurement of contaminant natural source zone depletion (NSZD) rates has become an important tool to manage petroleum contaminated sites. Most NSZD rate measurement methods rely on a balance on the biodegradation by-products (either carbon or heat). Carbon balance-based methods stoichiometrically convert measured soil-gas CO_2 flux related to contaminant degradation to equivalent contaminant mass loses. CO_2 flux-based methods require separating the fraction of the total CO_2 flux produced by NSZD from the fraction of CO_2 flux

Soil CO₂ Efflux-Based Field NSZD rates

$$Flux_{Tot} = Flux_{Nat} + Flux_{NSZD}$$

Correction done on the basis of:

- a. Background correction (based on single location)
- b. Location specific radiocarbon correction

¹⁴C correction

Five Sites Study

- Reported 25-75 percentile from Garg et al, 2017 (25 sites) larger mid 50%
- * than all 5 sites, except Site A (Midwest Refinery)
 - Garg et al, study relied in different measurement techniques

Comparing Both Corrections

Comparing Both Corrections

Case Study 2 Temporal variability on CO₂ Efflux

Dynamics of Soil Respiration Short Term Vs. Long Term

image from soilgasflux.com

Dynamics of Soil Respiration

Ma, J., Z.-Y. Wang, B. A. Stevenson, X.-J. Zheng, and Y. Li (2013), An inorganic CO2diffusion and dissolution process explains negative CO2 fluxes in saline/alkaline soils, Sci. Rep., 3, 1–7, doi:10.1038/srep02025.

Temporal Variability of CO₂ Effluxes

Data set from Malander et al, 2015 suggests need ~5 days of continuous data monitoring to approach long term average

Dynamics of Soil Respiration

Dynamics of Soil Respiration

- Soil gas effluxes are cyclical
 - Daily: following daily ambient pressure and temperature cycles
 - (tidal)- 2 cycles per day at tidal cycles
 - Seasonal soil generation process for both modern and fossil fuel CO₂ depend on soil temperature (and moisture)
 - Soil gas fluxes are susceptible to short term soil water saturation

Consider temporal flux changes (and weather) when using soil respirometry to measure NSZD rates

Case Study 3 Thermal Gradient: Background Correction vs. Time-Integrated Measurement

Model Inputs/Outputs

Outputs

Inputs

Base Case: Bemidji

- Crude oil spill site
- Depth to Groundwater: 7 m
- Average Groundwater Temperature: 9 °C

Proprietary, © 2018 All Rights Reserved

Base Case : Bemidji

Proprietary, © 2018 All Rights Reserved

Field rates from Sihota, 2014.

No Background Correction

α_{site} = 3.58 x 10 ⁻⁰⁷ m²/s

Model Output

Short term Average Thermal Gradient NSZD rates

Annual Average Thermal Gradient NSZD rates

1. Thermal gradient location	Error Rate
Methane oxidation zone	26.78%
Aerobic Zone	0.64%
Entire Vadose Zone	-0.57%

Proprietary, © 2022 All Rights Reserved

Further Reading on Long Term Thermal

• Battelle 2018 Conference

ABSTRACT

 Askarami and Sale, 2020

Both long term approaches boil down to similar practice: need long term thermal gradient-based estimates to reduce error Other sources cite extreme sensitivity of thermal gradient to background location selection (Rayner et al, 2020)

ARTICLE INFO

Finishing Thoughts and Best Practices

- Indirect methods + "fitting parameter within literature range value" (gradient methods) can easily be made consistent with direct methods used as reference (i.e., CO₂ flux methods) – questionable predictive value
- Background correction method is a rough approximation
 - CO₂ efflux, thermal gradient method
- Long term, time-integrated measurements over multiple days even out diurnal nature of system measured (and seasonal, for thermal gradient)
- Mass balance methods: ¹⁴C correction provides higher reliability
 - When coupled with long term measurement
- After many consensus guidance documents, the messaging on NSZD and NSZD rate measurement is still confusing
 - Unclear distinction between line of evidence and rate measurement
 - Publication bias in NSZD?

Food for Thought: Measurement Uncertainty

Image from istockphoto.com

Food for Thought: Measurement Uncertainty

Easy set-up. Expert results.

Julio Zimbron, Ph.D. www.soilgasflux.com jzimbron@soilgasflux.com

