

Wellsite Groundwater Metals – Best Management Practices

Miles Tindal Millennium EMS Solutions Ltd

Acknowledgements

- PTAC/AUPRF Funding
- PTAC Project Champions:
 - Sonia Glubish (CNRL)
 - Linda Eastcott (IOL)
- Regulatory Partners:
 - Premee Mohamed (AEP)
 - Sara Blacklaws (AER)

Dissolved Metals															
Aluminium	Antimony	Arsenic	Barium	Boron	Cadmium	Chromium	Copper	Lead	Molybdenum	Nickel	Selenium	Silver	Thallium	Uranium	Zinc
mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
0.05	0.006	0.005	1	0.5	0.00037	0.0049	0.007	0.007		0.13	0.001	0.0001		0.01	0.03
0.01	< 0.001	0.004	0.23	0.13	0.00028	0.005	0.008	< 0.001	0.003	0.1	0.002	< 0.00005	<0.0005	0.017	0.014
0.157	< 0.001	0.005	0.05	0.14	0.000134	0.003	0.009	< 0.001	0.003	0.11	0.001	<0.00005	<0.0005	0.018	0.01
0.006	< 0.001	0.004	0.13	0.1	0.000211	< 0.001	0.01	< 0.001	0.003	0.1	< 0.001	< 0.00005	<0.0005	0.017	0.01
0.01	< 0.001	0.005	0.06	0.14	0.000102	< 0.001	< 0.002	< 0.001	0.003	0.1	0.002	<0.00005	<0.0005	0.014	< 0.01
0.017	< 0.001	0.005	0.07	0.11	< 0.0001	< 0.001	0.002	< 0.0005	0.003	0.089	< 0.0005	< 0.0001	0.0002		< 0.01
0.029	< 0.001	0.029	0.11	0.12	0.00005	0.005	0.008	< 0.001	0.021	0.09	< 0.001	< 0.00005	<0.0005	0.002	0.008
0.036	< 0.001	0.027	0.15	0.13	0.000029	0.003	0.005	< 0.001	0.02	0.09	< 0.001	< 0.00005	<0.0005	0.002	0.017
0.007	< 0.001	0.022	0.14	0.13	0.00005	0.002	< 0.002	< 0.001	0.027	0.08	< 0.001	< 0.00005	<0.0005	0.002	0.02
< 0.004	< 0.001	0.01	0.11	0.18	0.000044	0.001	< 0.002	< 0.001	0.023	0.07	0.002	< 0.00005	<0.0005	0.004	< 0.01
< 0.004	< 0.001	0.008	0.05	0.03	< 0.0001	< 0.001	0.002	< 0.0005	0.009	0.074	< 0.0005	< 0.0001	< 0.0001		< 0.01
0.003	< 0.001	0.001	< 0.05	0.49	0.000164	0.006	0.011	< 0.001	< 0.003	0.07	0.003	< 0.00005	< 0.0005	0.097	0.013
0.005	< 0.001	0.002	< 0.05	0.38	0.000153	0.002	0.011	< 0.001	< 0.003	0.08	0.002	< 0.00005	<0.0005	0.141	0.025
0.008	< 0.001	< 0.001	< 0.05	0.3	0.000156	< 0.001	0.006	< 0.001	< 0.003	0.06	< 0.001	< 0.00005	<0.0005	0.11	0.01
< 0.004	< 0.001	< 0.001	< 0.05	0.4	0.000124	< 0.001	0.007	< 0.001	< 0.003	0.07	0.001	< 0.00005	<0.0005	0.13	< 0.01
0.006	< 0.001	< 0.001	< 0.05	0.22	0.0001	< 0.001	0.005	< 0.0005	0.002	0.061	< 0.0005	< 0.0001	< 0.0001		< 0.01
0.008	< 0.001	< 0.001	< 0.05	0.27	0.0001	< 0.001	0.006	<0.0005	0.002	0.06	< 0.0005	< 0.0001	< 0.0001		< 0.01
0.005	< 0.001	0.038	0.05	0.06	0.000049	0.005	0.009	< 0.001	0.02	0.1	< 0.001	< 0.00005	< 0.0005	0.005	0.007
0.008	0.003	0.039	0.06	0.09	0.000018	< 0.001	0.007	< 0.001	0.023	0.11	< 0.001	< 0.00005	<0.0005	0.004	0.009
0.006	< 0.001	0.04	0.07	0.05	0.000024	0.002	< 0.002	< 0.001	0.02	0.1	< 0.001	< 0.00005	<0.0005	0.004	< 0.01
< 0.004	< 0.001	0.042	0.07	0.08	0.000022	0.001	< 0.002	< 0.001	0.022	0.09	0.001	< 0.00005	<0.0005	0.003	< 0.01
< 0.004	< 0.001	0.039	0.07	0.07	0.00003	0.001	< 0.002	< 0.001	0.021	0.09	0.002	< 0.00005	<0.0005	0.003	< 0.01
0.005	< 0.001	0.036	0.1	0.05	< 0.0001	0.002	0.001	0.0007	0.018	0.091	0.0006	< 0.0001	< 0.0001	•	0.01
0.212	< 0.001	0.002	< 0.05	0.24	0.000096	0.003	0.007	0.001	0.006	0.02	0.004	< 0.00005	< 0.0005	0.075	0.011
0.758	< 0.001	0.003	0.06	0.26	0.000202	0.004	0.009	0.004	0.006	0.02	0.003	< 0.00005	<0.0005	0.054	0.013
0.006	< 0.001	0.002	0.05	0.4	0.000034	0.002	0.004	< 0.001	0.005	< 0.01	0.012	< 0.00005	<0.0005	0.06	< 0.01
0.084	< 0.001	0.001	0.05	0.5	0.000056	0.001	0.003	< 0.001	0.007	< 0.01	0.002	< 0.00005	<0.0005	0.04	< 0.01
0.075	< 0.001	0.001	0.06	0.2	< 0.0001	0.003	0.003	< 0.0005	0.007	0.004	0.0034	< 0.0001	< 0.0001	1	< 0.01

Background Groundwater Metals Concentrations

Tier 1 Groundwater Guidelines

Metal	Guideline (mg/L)	Metal	Guideline (mg/L)	
Aluminium	0.1	Lead	0.0025	
Antimony	0.006	Manganese	0.05	
Arsenic	0.005	Mercury	0.000005	
Barium	1	Nickel	0.052	
Boron	1.5	Selenium	0.001	
Cadmium	0.000033	Silver	0.0034	
Chromium	0.074	Uranium	0.02	
Copper	0.016	Zinc	0.03	
Iron	0.3			

Guideline values for Agricultural land use shown, for a water hardness of 100 mg/L

Background Groundwater Metals Relative to Tier 1

Considerations

- Drilling mud components
- Formation waters/produced water
- Anaerobic biodegradation

Drilling Mud Components

- Methodology:
 - Metals analysis for 314 mud components
- Compare:
 - Highest metal concentration with
 - Tier 1 soil remediation guideline
- Screen based on ratio:
 - <1 no concern
 - 1-10 investigate more closely
 - >10 should be included

Drilling Mud Tier 1 Ratios

Metal	Ratio	Metal	Ratio	
Zinc	2,800	Antimony	3.2	
Boron	970	Lead	1.5	
Nickel	930	Silver	0.6	
Copper	240	Uranium	0.4	
Barium	26	Mercury	0.3	
Chromium	21	Aluminium	No data	
Selenium	16	Iron	No data	
Cadmium	6.7	Manganese	No data	
Arsenic	5.7			

"Ratio" is the maximum concentration in any drill mud component / Tier 1 soil remediation guideline

Mud Products With Highest Metals Concentrations

Metal	Product Type	Metal	Product Type
Zinc	Sulphide scavenger	Antimony	Lost circulation additive
Boron	Deflocculant	Lead	Drilling System
Nickel	Deflocculant	Silver	-
Copper	Deflocculant	Uranium	-
Barium	Weighting agent	Mercury	-
Chromium	Mica	Aluminium	No data
Selenium	Impurity in KCl	Iron	No data
Cadmium	Deflocculant	Manganese	No data
Arsenic	Lost circulation additive		

Drilling Mud - Conclusions

- Ag, U, Hg: not present in significant concs
- Cd, As, Sb, Pb: not a concern:
 - Highest concentration in a drill product <10x Tier 1
 - That product would only be used <10% of mud
- Zn, B, Ni, Cu, Ba, Cr, Se: potentially present in drill mud at significant concentrations
 - >10x Tier 1 soil concentration

Produced Water

- Formation water analysis?
- Groundwater data-mining approach:
 - Semi-quantitative approach on large database
 - Data with other contamination excluded
 - Using chloride as tracer of produced water
 - Correlation between chloride and metal

Groundwater Impact from Produced Water?

Metal	Impact from PW?	Metal	Impact from PW?	
Aluminium	No	Lead	No	
Antimony	No	Manganese	No	
Arsenic	Possible	Mercury	No	
Barium	No	Nickel	No	
Boron	Possible	Selenium	Possible	
Cadmium	No	Silver	No	
Chromium	No	Uranium	No	
Copper	No	Zinc	No	
Iron	No			

Anaerobic Biodegradation

- Iron and Manganese
 - Released during anaerobic biodegradation
 - Should be included

Criteria for Associating Metals with Oilfield Wellsites

Metal	Drilling Fluid?	Produced Water?	Hydrocarbon Degradation?
Arsenic		\checkmark	
Barium	\checkmark		
Boron	\checkmark	\checkmark	
Chromium	\checkmark		
Copper	\checkmark		
Iron			\checkmark
Manganese			\checkmark
Nickel	\checkmark		
Selenium	\checkmark	\checkmark	
Zinc	\checkmark		

Summary – Tier 1 Groundwater Metals Potentially Associated with Wellsites

Metal				
Arsenic	Lead			
Barium	Manganese			
Boron	Nickel			
Chromium	Selenium			
Copper	Zinc			
Iron				

Summary – Tier 1 Groundwater Metals Likely Not Associated with Wellsites

Metal				
Aluminium	Mercury			
Antimony	Silver			
Cadmium	Uranium			

Best Management Practices Document

- Intended to apply to "typical" oilfield wellsites
- Additional consideration may be required at other sites including:
 - Thermal facilities
 - Gas plants
 - Facilities with specific metals concerns
- Professional judgement still required to ensure all chemicals are assessed appropriately

How Do I Use This Document?

- "Regulatory encouragement without formal endorsement"
- Document available on PTAC website:
 - <u>https://auprf.ptac.org/2016-groundwater-metals-associated-with-oilfield-wellsites/</u>
- Or Google "PTAC Groundwater Metals Wellsites"
- Use the document to support your rationale that all relevant chemicals have been assessed
- Important! Does not supersede any other regulatory requirements

