

NSZD of DNAPL: Is it a Thing?

Matt Rousseau, M.A.Sc., P.Eng.

Remediation Technologies Symposium Banff, AB
Oct 2022

Assessing Natural Source Zone Depletion for Creosote DNAPLs

A=COM

Jonathon Smith (AECOM) | Brad Koons (AECOM) | Randy Sillan (AECOM) | Ron Holm (AECOM) | Steven Gaito (AECOM) | Greg Jeffries (BNSF)

Site Background

 Former tie treating facility operated from early 1900s to 1980s

ment of carbon dioxide flux at ground surface.

- · All former facility structures razed in 1980s
- Biosparging system protective of off site groundwater quality since middle 2000s
- NSZD evaluated for source zone areas upgradient of sparging system

Evidence of NSZD from Groundwater Data

MEASURED BACKGROUND ZONE
PARAMETER WELLS
GRO -0.1 2.7
DRO -0.11 6.0
O₂ 7.8 2.0

2017 Supplemental Evaluation
 • Permanent nested soil gas implants

and temperature probes installed at 5 locations

• Soil gas and temperature data

recorded weekly in July-August 2017

Respiration testing in September-

October 2017

Average NSZD rates from multiple measurement techniques in the 100s of US gal/acre/year or

Sits and Clays (+25 mSh

Thermocouple Array in Monitorina Well

Gradient Method Results

Summary

- NSZD rates evaluated using multiple approaches, and results for each method demonstrate that NSZD is occurring, with relative agreement between methods.
- NSZD rates for this creosote site are significant compared to active remediation approaches.
- Mass depletion rates estimated based on respiration test results indicate that bioventing has limited potential to enhance biodegradation rates.

www.aecom.com

RemTech 2022 I GHD

Technique 1: dynamic closed chamber

- Active short-term sampling (≈ 5 minutes)
- Correct for background non-LNAPL CO₂ sources (e.g., plant respiration) using test locations away from LNAPL
- Surface cover can significantly affect results and interpretation
 - vegetated vs. non-vegetated
 - match surface cover types at background locations with LNAPL zone

Technique 2: biogenic heat

- Existing wells or dedicated installations
- Measure temperature at multiple depths through methane-oxidation zone
 - determine temperature gradients up and down
 - heat flux = temperature gradient x thermal conductivity of soil/rock
 - NSZD rate = heat flux / heat of reaction (e.g., CH₄ oxidation = 48 kJ/g C₁₀H₂₂)
- Correct with background locations of modelled background profile

Technique 3: soil gas gradient

Fick's Law

[Diffusive O_2 flux, J] =

 $[O_2 \text{ concentration gradient}] \times [diffusivity, <math>D_v]$

 $0.3g C_8H_8 (LNAPL)/g O_2$

from CRC CARE Technical Report 44

The test site

— Former MGP site with coal tar DNAPL

The site – former MGP

9 RemTech 2022 I GHD

Technique 1: dynamic closed chamber

Location code	Surface cover	Soil Type	Total Number of observations	Raw CO ₂ Flux (μMol/m ² /s)	Corrected CO ₂ Flux (μMol/m ² /s)	NSZD rates based on Corrected CO₂ flux (L DNAPL/ha/yr)
Background Loca	ations					
BCC01	Vegetation		4	4.4389		
DDCC22	little to no vegetation		6	1.3944		
DNAPL Plume						
DDCC05	little to no vegetation	Gravel	6	3.5091	2.1147	9,192
DDCC08	little to no vegetation	Silty gravel	5	2.5767	1.1823	5,139
DDCC10	little to no vegetation	Gravellysand	7	1.9505	0.5561	2,417
DDCC12	little to no vegetation	Gravellysilt	9	7.3927	5.9984	26,072
DDCC15	little to no vegetation	Silty gravel	6	1.2901	0	0
DDCC16	little to no vegetation	Silty gravel	3	3.1943	1.8000	7,824
DDCC17	little to no vegetation	Silty gravel	9	2.0042	0.6098	2,650
DDCC18	little to no vegetation	Silty gravel	3	2.4755	1.0811	4,699
DDCC19	little to no vegetation	Silty gravel	6	0.9966	0	0
DDCC20	little to no vegetation	Silty gravel	9	2.4754	1.0810	4,698
DDCC21	little to no vegetation	Silty gravel	6	1.0299	0	0
MW27	little to no vegetation	Gravelly clay	6	6.0708	4.6764	20,326
MW30	little to no vegetation	Silty gravel	3	4.7797	3.3853	14,714
DDCC13	little to no vegetation	Gravellysilt	9	1.5383	0.1439	625
DDCC14	little to no vegetation	Silty gravel	9	6.2137	4.8193	20,947
DDCC11	Vegetation	Gravellysilt	9	7.6253	3.1865	13,850
DDCC03	Vegetation	Gravellysilt	3	15.9746	11.5358	50,140
DDCC04	Vegetation	Gravellysilt	6	3.0132	0	0
DDCC09	Vegetation	Gravellysilt	6	6.6541	2.2153	9,629
DDCC01	Vegetation	Silt - silty clay	6	6.0125	1.5737	6,840
DDCC02	Vegetation	Silt - silty clay	6	7.2758	2.8369	12,331
DDCC06	Vegetation	Silt - silty clay	3	6.9980	2.5591	11,123
DDCC07	Vegetation	Silt - silty clay	3	9.9191	5.4803	23,820
MW08a	Vegetation	Silty clay	3	16.4099	11.9710	52,032

RemTech 2022 I GHD

Technique 2: biogenic heat

Donth	MW08A	MW30		
Depth (metres bgs)	(background)	Temperature (°C)	Δ T (° C)	
Temperature profiles				
0.5	15.77344579	17.44444241	1.670996612	
1	17.22183411	19.19607255	1.974238435	
1.5	18.09723435	19.8090903	1.711855958	
2	18.4908472	20.04104907	1.550201869	
2.5	18.51010876	20.10343715	1.593328388	
3	18.48524486	20.18773551	1.702490654	
3.5	18.24281612	20.03045257	1.787636449	
4	18.09696799	20.06366939	1.966701402	
4.5	17.94429603	19.73164276	1.787346729	
5	17.824134	19.66546869	1.841334696	
5.5	17.65233084	19.45364556	1.80131472	
6	17.50006425	-	-	

			Temperature	e (°C)		
15	16	17	18	19	20	21
'	•					
				- P.		
			10			
				} I		
				—	*	
			,			
				•		

RemTech 2022 I GHD

Technique 3: soil gas gradient

DNAPL Plume						
Parameter	Value	Unit				
O ₂ diffusion coefficient	3.92E-07	m ² /s				
O ₂ gradient calculations and background correction						
dC/dz (O ₂) at MW14	12.96	g O ₂ /m ³ m				
dC/dz (O ₂) MW08A corrected	4.12	g O ₂ /m³m				
dC/dz (O ₂) MW30 corrected	55.98	g O ₂ /m ³ m				
O ₂ diffusive flux at MW08A and MW30						
O ₂ Diffusive flux at MW08A	0.13	g O ₂ /m ² day				
O ₂ Diffusive flux at MW30	1.89	g O ₂ /m ² day				
Stoichiometric calculations						
Molecular weight C ₈ H ₁₈	114	g/mol				
Molecular weight O ₂	32	g/mol				
Mass C ₈ H ₁₈	114	g				
Mass O ₂	400	g				
C ₈ H ₁₈ : O ₂	0.285	g C ₈ H ₁₈ / g O ₂				
Conversion of O ₂ diffusive flux to NSZD rate						
NSZD rate	0.04 (MW08A) – 0.54 (MW30)	g/m²/day				
NSZD rate	140 (MW08A) – 1,902 (MW30)	L/ha/yr				

RemTech 2022 | GHD

Summary of results

Measurement technique	Mean NSZD rate estimate (L/ha/yr)	Mean NSZD rate estimate (L/m²/yr)	Mean NSZD rate estimate (gal/acre/yr)
Soil gas gradient	1,000	0.1	100
CO ₂ efflux	12,500	1.2	1,300
Biogenic heat	3,000	0.3	340

RemTech 2022 | GHD

Conclusions

- 1. NSZD monitoring techniques for LNAPL will also be applicable for certain types of DNAPL
- 2. NSZD rates typical for DNAPL may be less than LNAPL
- 3. bias in surficial CO₂ efflux methods at paved sites may be an order of magnitude or more
- 4. NSZD is a viable DNAPL remedial/management consideration

NSZD of DNAPL? It's a thing.