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• In contaminated sites work, identifying how a contaminant could 
reach a potential receptor is key

• If that “outlet” is a groundwater discharge zone, how do we map it?
– Field reconnaissance

– Remote sensing techniques

• What parameter could we measure from remote sensing 
techniques to identify groundwater discharge?

The Objective



4

Using Temperature to Identify Potential 
Groundwater Discharge Zones

The temperature of groundwater discharge zones reflects that of ambient conditions (Cartwright, 1974)
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• Use of aerial TIR imagery to map spatial 

temperature patterns in surface water 

bodies to detect in-stream groundwater 

discharge (WSI 2006, 2007a, 2007b).

Aerial Thermal Infrared Surveys – Previous Studies

WSI 2007b

• Use of thermal satellite imagery from USGS 

Landsat archive to map regional groundwater 

discharge zones (Sass et al. 2013)

Question: can we use an aerial TIR survey to identify in-stream and terrestrial (i.e., land-

based) groundwater discharge areas at a large site with other previously documented 

springs and seeps?

Sass et al. 2013
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• Active sour gas processing plant in 
Alberta

• Multiple CoCs associated with plant 
operations

• Several documented contaminated 
springs, seeps, and artesian 
conditions

Case Study – Sour Gas Processing Plant

Objective: identify and map potential 

groundwater discharge zones from 

airborne TIR imagery:

1. Seepage faces (“terrestrial seeps”)
2. In-stream discharge zones

Equivalent 

setting to Case 

Study

Terrestrial 

Seep(s) of 

Interest

Terrestrial 

Seep(s) of 

Interest

Sass et al. 2013
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• Flown in September 2020 

• Flew over section blocks of two 
creeks, adjacent to the operating sour 
gas plant

– Block 1: ~15 km2

– Block 2: ~4 km2

• Water temperatures were recorded by 
five in-stream temperature sensors 
during survey to calibrate the 
temperatures within the thermal 
imagery

Case Study: Aerial TIR Survey
NV Spatial Inc. 2020

FLIR SC6000 LWIR  (8 to 

9.2 µm) sensor mounted 

in a DHC-6 Twin Otter 

fixed-wing aircraft

In-stream logger at hydrometric station
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• ~50 cm resolution 

imagery acquired

• Final TIR imagery was 

mosaiced together to 

create seamless coverage 

for each survey block

Case Study: Aerial TIR Survey

NV Spatial Inc. 2020
Examples of different colour ramps applied to same TIR image
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Data acquired from survey

• TIR imagery (raster files)

• Various (vector) shapefiles – stream centrelines, accuracy checks, TIR image centre 

points, longitudinal temperature profiles (LTP) and significant feature sites (SFS)

• Colour ramp layer files (for use in ArcMap)

Desktop Mapping

• Overlay the TIR data with other potential indicators of groundwater discharge

• Different indicators were identified:

1. Terrestrial Seeps

2. In-Stream Discharge

Approach – Desktop Mapping
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Approach 1 – Terrestrial Springs & Seeps

TIR Data 
Analysis

• Isolate cool areas

• ≥4oC relative change from 
surrounding

• Compare signature to known 
(mapped) seep locations

• What conditions are present 
at the known seep 
locations?

Spatial Overlay 
of Indicator(s) 

of GW Seepage

•Not in a shadow zone

•Where terrain elevation drops below 
the interpreted water table elevation

•Aquifer (or poor aquitard) mapped at 
surface

•On slope or bottom of slope

•Along or near possible 
tributary/drainage

•Presence of phreatophyte plant species

•Aerial imagery – wetlands, wet zones or 
ice (in winter)

•Geochemical signatures (↑ [TDS] = ↑ 
GW residence time

Identify 
Favourable 
Seep Areas

• Filter flag fields to 
identify zones with cool 

thermal signature AND 
indicator present 
AND/OR no constraints 

(shadow zones)
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Approach 1 – Terrestrial Seeps Results

• An important factor 

influencing temperature 

changes = shadows (sun 

angle or vegetation)

• 31 sites identified as 

potential seep locations

• Trends:

– Most potential locations 

are found on south 

facing slopes/toe of 

slopes

– No shadow expected 

based on available data
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Approach 2 – In-Stream Discharge Zones

TIR Data 
Analysis

• Delineate stream channel 
using TIR, LiDAR, aerial 
imagery

• Isolate cool areas within 
stream channel

• ≥4oC relative change from 
surrounding

Spatial Overlay 
of Indicator(s) 

of GW discharge

• Not in a shadow zone

• Gaining/losing stream segments 
(using instream flow meters data)

Identify 
Favourable 

Discharge Areas

• Filter flag fields to 
identify zones with cool 

thermal signature AND 
no constraints (shadows 
on gravel bar zones)
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Approach 2 – In-Stream Discharge Zones 
Results
• 16 sites identified as potential 

in-stream discharge zones 

along one of the creeks

• Trends:

– > 4oC Temperature change and 

no gravel bar shadow expected

– Majority of identified 

discharge zones are closer to 

north bank of creek
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Desktop Mapping Results
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Sources of Uncertainty

• Shadows cast by landforms and vegetation – diligence in identifying 

potential discharge areas along north-facing slopes

• RGB imagery used to assess vegetation shadow effects was collected in 

July 2018, earlier in the year than the aerial TIR imagery

• Spatial resolution of the sensor

• Shadow length affected by time of year of the surveys, as sun angle is 

lower in September in southern AB compared to June through August
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• An airborne thermal infrared survey was flown in September 2020

• After the survey, the resultant TIR imagery was analyzed for potential 

groundwater seepage and in-stream groundwater discharge zones

• 31 potential terrestrial seeps and 16 potential in-stream discharge zones 

were identified

• Ground truthing exercises commenced through 2021 and 2022 – potential 

terrestrial seeps and in-stream discharge zones were visited and sampled 

for CoCs

… stay tuned for a future Part 2 talk to share this story!

Summary and Next Steps
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