DEVELOPMENT OF AN EXTRACTION METHOD FOR ESTIMATING PHYTOACCESSIBLE CONCENTRATIONS OF SOIL STERILANTS BROMACIL AND TEBUTHIURON JACKIE MAXWELL, M.SC., P.AG.

SUPERVISOR(S) SYLVIE QUIDEAU, PH.D. MILES DYCK, PH.D.

Applied Science: Assessment of Contaminated Sites

ALBERTA TIER 1 GUIDELINE FOR TEBUTHIURON: <u>0.046 MG/KG</u> (DIRECT SOIL CONTACT – ECOLOGICAL) SS19-6B: ESTIMATED TOTAL TEBUTHIURON: <u>0.148 MG/KG</u> SS19-6B: ESTIMATED PHYTOACCESSIBLE TEBUTHIURON: <u>0.020 MG/KG</u>

Looking west: Background crop appears shorter, less developed

Looking South:

Viewed from the seeding direction, no visual difference

Up Close:

Weeds are dying from selective herbicide application, crop is alive

Even Closer: Obvious weeds are chlorotic, crop is not

Soil Sterilants Bromacil & Tebuthiuron

Drozdowski, B., Powter, C., & Levy, S. (2018). Management of Sterilant Impacted Lands: Literature Synthesis; Pesticide Properties Database. (2021). *Tebuthiuron (Ref: EL 103);* Pesticide Properties Database. (2021). *Bromacil (Ref: DPX N0976)*

OBJECTIVES & HYPOTHESIS

1) Phytoacessible Sterilant \neq Total Sterilant, as Adsorbed Sterilant $\gg 0$

2) Adsorption =
$$\beta_0 + \beta_1(Organic Matter) + \beta_2(Clay) + \beta_1\beta_2$$

Hypothesis: Adsorption to soil organic matter and/or soil particles reduces what remains soluble or phytoaccessible of bromacil or tebuthiuron concentrations; this soluble or phytoaccessible portion is less than the bromacil or tebuthiuron concentration estimated by 99 percent methanol extraction conducted at commercial laboratories.

How can the soluble / phytoaccessible portion of bromacil and tebuthiuron be estimated?

Total, Bioavailable, Bio/Phyto-Accessible Concentrations of Soil Sterilants

Methods to Estimate Phytoaccessibility

- 'Classical' extractants specific to macro-ormicronutrient(s)
- These do not destroy soil structure or change pH
- e.g., 0.073 sodium acetate, 0.01 M calcium chloride

Nutrients

- Rates tested by bioassays
- Different soils tested
- Extract spiked soil with 0.01 N or 0.01 M calcium chloride
- Soil or extract concentration measured

Application Rates

Adsorption/desorption studies using different ionic strengths of calcium chloride

 Bioassay experiments and measure concentration in tissues

Contaminants

Q01: Method

Garrett, R. G., Hall, G. E. M., Vaive, J. E., & Pelchat, P. (2009). A water-leach procedure for estimating bioaccessibility of elements in soils from transects across the United States and Canada. Applied Geochemistry, 24, 1438–1453.; Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & van Vark, W. (2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31(9–10), 1299–1396.; Alva, A. K., & Singh, M. (1991). Sorption-desorption of herbicides in soil as influenced by electrolyte cations and ionic strength. Journal of Environmental Science and Health, 26(2), 147–163.; McKenzie, R. H. (2016). Determining Plant Available Phosphorus. Top Crop Manager West, 40, 41, 59...etc!

Q01 Results: Estimated Phytoaccessible Bromacil W = 5131, p < 0.001

Estimated Total [C] Estimated Phytoaccessible [C]

Q01 Results: Estimated Phytoaccessible Tebuthiuron

Do higher percentages of clay and organic matter significantly increase adsorption of bromacil or tebuthiuron?

Exploratory Data Analysis

Q02: Method

Adsorbed Fraction = $\frac{Total - Extract}{Total}$ where:

Total = total sterilant concentration (mg/kg), estimated by 99 percent methanol extraction, or the spiked amount Extract = sterilant extracted by 0.01 M calcium chloride (mg/kg)

Q02: Selected Categories for Organic Matter & Clay

A 2x2 ANOVA tested 1) if higher %OM increases adsorption, 2) if higher %clay increased adsorption, and 3) if there is an interactive effect b/w %OM & %clay

Bromacil	High Clay Content (18-38%)	Low Clay Content (0-16%)
High Organic Matter (3.24-64.6%)	10	10
Low Organic Matter (0.00-2.92%)	10	10
Tebuthiuron	High Clay Content (18-66%)	Low Clay Content (0-16%)
High Organic Matter (5.29-66%)	10	10

RENR 581: Introduction to Exploratory Data Analysis, and RENR 582: Elementary Statistics in the Applied Sciences

Q02 Results: OM & Clay Effect on Bromacil Adsorption

Organic Matter Content

Q02 Results: OM & Clay Effect on Tebuthiuron Adsorption OM: F = 25.89, p < 0.001

Organic Matter Content

High > 18%

Low < 16%

Discussion

For large areas of marginal bromacil or tebuthiuron contamination, economical approaches are needed to reduce risk, meet regulatory requirements, and **protect soil health**. Removal of soil which, marginally, does not meet the provincial guidelines could affect productivity of agricultural land more than potential risk posed by sterilant concentrations in soil.

FUTURE RESEARCH

 Refinement of total, bioavailable and bioaccessible definitions for organic contaminants

 Comparative extraction between 99 percent methanol and 0.01 M calcium chloride using developed method

Examine micro-pore sequestration of sterilants

