Seasons of change: NSZD rates across (12) sites using new high-data density technology

Steven Mamet, Nicholas Higgs, Amy Jimmo, Curtis Senger, & Steven Siciliano Environmental Material Science, Inc. Saskatoon, SK

Natural Source Zone Depletion Explained

CRC CARE Technical Report no. 46

The role of natural source zone depletion in the management of light non-aqueous phase liquid (LNAPL) contaminated sites

Concentration Gradient Method

Fick's First Law of Diffusion -

rate of diffusion is proportional to the concentration and surface area

CRC Care 2018

$1. J = D_v^{eff}(\frac{dC}{dZ})$

- / = steady state diffusive flux (g/m²-soil/s)
- D_v^{eff} = effective vapour diffusion coefficient (m²/s)
- $\frac{dC}{dZ}$ = soil gas concentration gradient (g/m³-m)

2. Jimpacted - Jbackground = Jcorrected

3. Theoretical stoichiometric conversion: benzene–CO₂ $2C_6H_6 + 15O_2 \rightarrow 12CO_2 + 6H_2O$ $2C_6H_6 \cdot 2^*(12.011 \text{ g/mol}^*6 + 1.008 \text{ g/mol}^*6) = 156.223 \text{ g/mol}$ $12CO_2: 12^*(12.011 \text{ g/mol} + 15.999 \text{ g/mol}^*2) = 528.096 \text{ g/mol}$

When 156 g of C_6H_6 are consumed, 528 g CO_2 are produced \textit{Stoich}_{CO_2} = 156 / 528

4. Natural Source Zone Depletion NSZD = *J*_{corrected}**Stoich*_{CO₂}

CRC CARE Technical Report no. 46

The role of natural source zone depletion in the management of light non-aqueous phase liquid (LNAPL) contaminated sites

Why CH_4 and why high data density?

- Early attenuation processes dominated by methanogenic degradation
- "Signal shredding"
- Lag between peak subsurface gas concentrations and peak surface efflux.

Soil Sense

8.27" 20.99 cm

- Three solid-state sensor packs that provide constant soil feedback to EMS/client
- Continuously estimate within-soil hydrocarbon vapours carbon dioxide, methane, oxygen, temperature, barometric pressure, and relative humidity
- Features
 - NDIR technology
 - LoRa, LTEM, Satellite enabled
 - Fits into existing boreholes
 - Flush mount for active sites where Solar is not an option
 - Continuous remote data access
 - Single setup cost, no maintenance
- Soil Sense estimates **biological activity** and **hydrocarbon concentrations** every 30-mins
- Transmit data via LoRa gateways linked to cellular or satellite networks
- Can be used in remote areas (solar power) or developed areas (long-life batteries), with yearly servicing.

<image>

Soil Sense

Low sampling frequency (point-in-time is the "pits")

Soil Sense collects 48 measurements per day

The Sites

USDA

Guidance values

Convert Flux to Hydrocarbon Depletion (GUIDANCE)

CONVERT FLUX TO HYDROCARBON DEPLETION (SITE-SPECIFIC)

Convert Flux to Hydrocarbon Depletion (GUIDANCE)

CONVERT FLUX TO HYDROCARBON DEPLETION (SITE-SPECIFIC)

NSZD through space

- NSZD estimates

 incorporate methane and
 paired CO₂ production/O₂
 consumption
- More representative estimates of biological activity.

12 sites76 Soil Senses228 Sensor packs92,662,066 data points!

Plume volume

Typically stable over seasons

- Active site
- Additional sensor install and equilibration
- Site with high-water table and fall ice-up.

How do sites compare?

DONT ALWAYS KNOW THINGS

N I DO, I KNOW NOTHING

Where are we now?

- High density continuous measurements
 - Diurnal and seasonal nuances, site-driven variation
 - CH_4 may make up the bulk of NSZD in some sites
- Soil moisture
 - Implications for fluid transfer and PHC distributions
- Site-specific estimates
 - Theoretical stoichiometry may not represent site processes
- Stay-tuned for next year!
 - FEA
 - Bayesian prediction networks
 - AgTech
 - Winter is coming.

TECHNOLOGIES DU DEVELOPPEMENT DURABLE CANADA

and the second states and

Pyroelectric Infrared Detectors in Soil Sense

CONCENTRATION GRADIENT METHOD ("CGM") – CLASSIC SITE

Adapted from CRC CARE 2018

Concentration Gradient method ("CGM") – classic site

CGM – Step 1: Calculate Flux from Soil

CGM– Step 2: Convert Flux to Hydrocarbon Depletion (GUIDANCE)

 $J = D_V^{\text{eff}} \left(\frac{\text{dC}}{\text{dZ}}\right)$ corrected $NSZD_{point} = J_{corrected} * Molar Ratio$ $J = 3.8 \times 10^{-7} \frac{\text{m}^2}{\text{s}} * 64 \frac{9\text{CO}_2}{\text{m}^3\text{m}}$ $= 2.43 \times 10^{-5} \frac{9CO_2}{m^2s} * 0.3 * 86400$ $J = 2.43 \times 10^{-5} \frac{9CO_2}{m^2 s}$ $= 0.63 \frac{9C_6H_6}{m^2d}$ Convert to g – Representative Hydrocarbon $2C_6H_6 + 15O_2 \rightarrow 12CO_2 + 6H_2O_2$ Molar Ratio = $\frac{78.11 \frac{9C_6H_6}{mol}}{44.11 \frac{9C_0}{mol}} * \frac{2 \text{ mol}_{C_6H_6}}{12 \text{ mol}_{C_0}} = 0.3$

EMS Soil Sense Every 30 Minutes All day, every day

Direct Hydrocarbon Detection

IR Active Hydrocarbons

Hydrocarbon Depletion

• CO₂, CH₄, O₂

Environmental Data

• Temperature, Relative Humidity, Pressure

EMS SOIL SENSE Frenched Power

 Ideal for active sites with existing infrastructure

Battery Power

 Well suited for sites with wildlife or malfeasance concerns.

Solar Power

Perfect for remote sites, hard to access.

Vertical placement parameters

EMS SOIL SENSE Design flexibility

Waterproof

 Sensor packs can survive being submerged in areas with a fluctuating water table.

Ideal Design

- Sensor Pack 1 near surface
- Sensor Pack 3 above LNAPL
- Sensor Pack 2 mid way between 1 & 3

Site Variability

- Borehole permeability
- 1 and 2 D modelling of gas fluxes

Old dragon rendering Facility

Old dragon rendering Facility

Old dragon rendering Facility

