RemTech 2022 October 14th, 2022

Session: Natural Attenuation of Petroleum NAPLs (NSZD)

Standard Guide for Estimating Natural Attenuation Rates for NAPL in the Subsurface

Parisa Jourabchi, Ph.D., P.Eng. Environmental Engineer

> ARIS Environmental Ltd. Vancouver, Canada

Unique site conditions

Tools for customized solutions using accepted methods

- Rapid technology development
- Support remedial decision-making
- Improved Conceptual Site Model (CSM)

Using available site data collected for investigation/remediation Additional data by cost-effective and non-invasive methods

Addressing challenges & gaps

Survey results

Survey Results – Rates Quantified & Documented?

- Task Group of 50 members representing:
 - Academia
 - Industry
 - Regulators
 - Consultants
- Tripp Fischer, PhD, PG Brownfield Science and Technology Inc (BSTI) chief science officer of BSTI and chair of the ASTM Corrective Action Subcommittee E50.04, and currently serving on the ASTM International board of directors.
- Siggy Johnston, Project Manager (ARIS)
- Parisa Jourabchi, PhD, PEng, Task Group lead and the principal author (ARIS)

Engineered Remedy: Also referred to in other guidance documents as active remediation, is generally considered to be more resource intensive in terms of cost, energy use and GHG emissions (ASTM E2876).

Natural Remedy: Also referred to in other guidance documents as passive or knowledge-driven remediation, is generally a less resource intensive remediation system mainly relying on natural or in-situ and enhanced bioremediation measures.

Monitored Natural Attenuation (MNA): A natural remedy documented through site characterization and monitoring.

Natural Attenuation & Natural Source Zone Depletion (NSZD)

Natural Attenuation: The naturally occurring mass loss of hydrocarbons in <u>various</u> phases and media (NAPL, vapor, soil, and groundwater) within a volume of soil or groundwater contamination.

https://www.astm.org/workitem-wk76688

Natural Source Zone Depletion (NSZD): The naturally occurring mass loss of hydrocarbons in NAPL source zones as a result of dissolution, volatilization, and biodegradation.

Standard Guide for Estimating Natural Attenuation Rates for Non-Aqueous Phase Liquids in the Subsurface

- 1. CO₂ Efflux Method
- 2. Temperature Gradient Method
- 3. Soil Gas Gradient Method
- 4. Groundwater Monitoring Method
- **5. NAPL Composition Method**

Products & Services Get Involved About News	s
Home / Products & Services / Standards & Publication	ns / Standards Products
ASTM WK76688 () New Guide for Estimating	Natural Attenuation
Rates for Light Non-Aque subsurface	ous Phase Liquids in the

https://www.astm.org/workitem-wk76688

Multiple technologies & approaches for data collection & interpretation for each method...

- Description of method & available technologies
- Screening or feasibility assessment of the method based on site conditions
- Background sources and correction methods
- Data interpretation and key considerations and challenges
- Applicability of the method for evaluating the performance of enhanced attenuation (bioremediation) systems
- Other method applications

Topics covered for each of the five methods – details in Appendices X1 to X5

Natural Attenuation Processes & Pathways

CO₂ Efflux Method - Assumptions & Site-Specific Considerations

Underlying Assumptions

- Attenuation of NAPL constituents through biodegradation
- Complete mineralization of NAPL constituents to CO₂
- CO₂ transport in soil gas from the source to the ground surface (point of measurement)
- Background source: CO₂ produced from natural soil respiration
- Estimate the portion of CO₂ efflux attributable to contaminant biodegradation

Site Conditions

- Ground surface cover
- Vegetation
- High natural organics (e.g., peat)
- High permeability soils and barometric pumping
- Low gas permeability soils
- Preferential pathways (e.g., utilities)

Step 1. Install DCC
Step 2. Estimate the CO₂ Efflux, J_{CO2}
Step 3. Correct for background sources

$$J_{CSR} = J_{CO_2} - J_{NSR}$$

 J_{CSR} = attributed to NAPL soil respiration (μ mol CO₂/m²/s) J_{CO2} = total measured (μ mol CO₂/m²/s) J_{NSR} = attributed to natural soil respiration (μ mol CO₂/m²/s)

Step 4. Estimate the NSZD Flux

$$J_{NSZD} = J_{CSR} \frac{M_w S_{HC:CO2} U}{\rho_o}$$

 $J_{NSZD} \text{ in gallons/acre/year.}$ $M_w = \text{Molar weight of hydrocarbon (g/mol)}$ $S_{HC:CO2} = \text{Stoichiometric ratio of a mole of hydrocarbon}$ degraded per mole of CO₂ produced $\rho_o = \text{Density of hydrocarbon (kg/L)}$ $U = \text{Unit conversion factor} = 33.7 \frac{s}{year} \times \frac{kg}{\mu g} \times \frac{m^2}{acre} \times \frac{gallon}{L}$

Temperature Gradient Method – Assumptions & Site-Specific Considerations

Underlying Assumptions

- Attenuation of NAPL constituents through aerobic biodegradation and oxygen availability
- Production of biogenic heat from aerobic oxidation of hydrocarbons (notably methane)
- Background correction for heat exchange with the atmosphere and other sources of heat in the subsurface

Site Conditions

- Low gas permeability surface cover that could limit soil gas transport^{*}
- High natural organics (e.g., peat)
- Confined NAPL conditions (ASTM E2856)
- Geologic or anthropogenic sources of heat not related to the NAPL

Temperature Gradient Method – Example Implementation

Step 1. Identify the temperature profileStep 2. Correct for background sources (select from three approaches)

Thermal correction approach	Measurement at background location
Background correction	yes
Thermal correction from surface heating and cooling – "single-stick" method	no
Thermal correction from surface heating and cooling - modeling	no

Step 3. Estimate the NSZD Flux, J_{NSZD}

Advances in the in-situ estimation of soil thermal conductivity

- 1. Active heat source is supplied and changes in temperature are monitored (Karimi Askarani et al. 2021)
- 2. Long-term temperature monitoring to estimate thermal diffusivity (Sweeney, unpublished and Kulkarni et al. 2021)
- requires estimate of volumetric heat capacity based on soil type and moisture content.

Advances in correcting for background sources

- Solution to heat conduction in 1-D at steady state
- Solving for three unknown variables:
 - 1. boundary condition of heat source/sink at the ground surface
 - 2. NSZD related heat source
 - 3. depth of the heat source
- Iterative algorithm & optimized fit between the observed and predicted temperature profiles

"Single-Stick" Method

Thermal estimation of natura	l source zone depletion rates without	
background correction	Water Research 169 (2020) 115245	
Kayvan Karimi Askarani, Thomas Clay Sale [*]		
Civil and Environmental Engineering Department, Colorado State University, 1320 Campus Delivery, B01, Fort Collins, CO. 80523-1320, USA		

Soil Gas Gradient Method – Assumptions & Site-Specific Considerations

Underlying Assumptions	Site Conditions
 Spatial Changes in soil gas composition – vertical profile in the vadose zone resulting from biodegradation of NAPL constituents Vertical gradients in O₂, CO₂, or hydrocarbox concentrations in soil gas Diffusive gas transport in the vadose zone 	 Low gas permeability surface cover that could limit O₂ ingress* Low gas permeability soils Soil gas advection from barometric pumping effects or high methane concentrations

Soil Gas Gradient Method – Example Implementation

Figure from Dr. Iason Verginelli (2021)

Step 1. Identify the O_2 concentration profile in soil gas **Step 2.** Estimate the concentration gradient of O_2 in soil gas **Step 3.** Estimate the reaction length **Step 4.** Estimate the diffusion coefficient **Step 5.** Estimate the mass flux **Step 6.** Correct for background O_2 demand (two approaches) **Step 7.** Estimate the NSZD Flux, J_{NSZD}

$$J_{NSZD} = J_{CSR} S_{HC:O2}$$

 J_{NSZD} in gallons/acre/year $S_{HC:O2}$ = Stoichiometric mass ratio of g of hydrocarbon degraded per g of O₂ consumed

Soil Gas Gradient Method – New Guidance Content

Types of Soil Gas Profiles & Analytical Solutions

(a) Linear profiles

(b) Semi-curvilinear profiles

(c) Curvilinear profiles

Review of Chemical of Concern (COC) - Specific Attenuation Rates

- <u>Analytical Models</u>
 - Examples:
 - BioVapor (DeVaull, 2007; API 2010)
 - PVI Screen (US EPA, 2016)
 - PVI2D (Yai et al., 2016)
- <u>Numerical Models</u>

Example reactive transport models

- Lahvis et al. (1999)
- MIN3P-Dusty, Molins and Mayer (2007) & other models used in assessing vapor intrusion: Yao and Suuberg (2013) and SERDP (2014)

MIN3P-Dusty Simulations: Jourabchi and Hers (2013) and Jourabchi et al. (2016) Groundwater Monitoring Method – Assumptions & Site-Specific Considerations

Underlying Assumptions

- Spatial (up-and down-gradient of the source) changes in the groundwater chemistry including dissolved gas concentrations resulting from biodegradation of NAPL constituents in the saturated zone
- Dissolution and flow of NAPL constituents in groundwater

Site Conditions

- Availability of groundwater monitoring data and hydrogeologic parameters
- Assessment of confined NAPL conditions (ASTM E2856) for data interpretation

Groundwater Monitoring Method – Example Implementation

Step 1. Estimate source mass depletion due to dissolution & flow **Step 2.** Estimate the assimilative capacity, A_c , based on groundwater monitoring data **Step 3.** Assess conditions for <u>degassing & calculate A_c </u> <u>accordingly</u> **Step 4.** Estimate the rate of biodegradation in the saturated zone **Step 5.** Estimate the total rate in the saturated zone, R_{sat} (kg/day)

$$R_{sat} = R_{sat-dis} + R_{sat-bio}$$

 R_{sat} = total mass loss of hydrocarbons in the saturated source zone combination of dissolution and flow of the hydrocarbons ($R_{sat-dis}$) and the rate of hydrocarbons biodegraded ($R_{sat-bio}$).

Groundwater Monitoring Method – New Guidance Content

Modified Control Volume Method

Estimate methene generation based on:

- 1. Sampling & analysis of dissolved N $_2$, Ar, CO $_2$ and CH $_4$ data
- Degassing batch model of Amos et al. (2005)
- 3. Model calibration
- 4. Include degassing into the assimilative capacity, $A_C \longrightarrow \propto A_C$

$$R_{sat} = R_{sat-dis} + R_{sat-bio}$$

Using a Batch Model to Estimate Methane Production

Degassing Method Natural Source Zone Depletion Case Study Reyenga (2020) Applied NAPL Science Review (ANSR)

Degassing can be significant for confined NAPL/low permeability conditions

NAPL Composition Method – Assumptions & Site-Specific Considerations

Underlying Assumptions	Site Conditions
 Changes in the composition of NAPL constituents over time NAPL sampled consecutively from a single location is representative of the same NAPL body over time (monitoring period) 	 Finite NAPL mass with no additional releases during the assessment period Availability of NAPL compositional data over time (minimum of approximately four years and 9 to 10 NAPL samples) Conversion of fraction/percent rates into volumetric rates will require an estimate of total NAPL volume at the onset of the monitoring period

NAPL Composition Method – Example Implementation

Groundwater/product monitoring well

- Conservative compound(s) increase in concentration due to weathering NAPL
- Mass loss of other compounds due to biodegradation, volatilization and dissolution
- Absolute mass loss rate estimated relative to the increase in conservative compound(s)
- Mass loss from single conservative compound Douglas et al. (1996)

Environmental Stability of Selected Petroleum Hydrocarbon Source and Weathering Ratios - ES&T Baedecker at al. (2018)

Weathering of Oil in a Surficial Aquifer - Groundwater

Monitoring & Remediation

DeVaull et al. (2020)

Petroleum NAPL Depletion Estimates and Selection of Marker Constituents from Compositional Analysis

by George E. DeVaull, Ileana A. L. Rhodes, Emiliano Hinojosa, and Cristin L. Bruce

Step 1. Identify the relevant constituents
Step 2. Analyze data on mass fractions of NAPL constituents
Step 3. Identify potential markers
Step 4. Refinement on identifying potential markers
Step 5. Estimate the effective rates

at (t = 0) for total NAPL $(k_{eff,T}(t = 0); \text{ per year})$ or individual constituents $(k_{eff,i}(t = 0); \text{ per year})$ Or the half-life, $t_{half} = \frac{-\ln(0.5)}{k_{eff}}$ (years)

> Remaining fraction at time, t $= \frac{\chi_{A,q}(0) + (1 - \chi_{A,q}(0))e^{-\kappa_{A,q}t}}{\chi_{A,i}(0) + (1 - \chi_{A,i}(0))e^{-\kappa_{A,i}t}}$ mass fractions relative rates

- Example implementations
- Seven Case Studies

Location & Climate	NAPL Type	Lateral & Vertical Extent of Source Zone	Ground Surface Cover
Remedial Concern(s)	Intended Application of the Estimated Rates	Factors in Method Selection	Applicability in Support of Decision(s)
Method-Specific Technologies	Estimated Rates	Approach to Rate Calculations	Background Sources & Correction Methods
	Spatial Coverage	Assessment of Seasonal Variability	

- 1. In one case study, an estimated rate of 200 gallon/acre/year was used as a <u>baseline metric</u> to assess the performance of the engineered (active) remedy vs. MNA.
- 2. Rates can vary seasonally, and are expected to decrease over time as the more soluble, volatile and biodegradable constituents of the NAPL diminish.

An assumption of constant NSZD rate over time for estimating the timeframe for remediation under natural attenuation is not recommended.

- 3. Trend analyses of the attenuation of COC-specific concentrations may be more appropriate than estimates of timeframe for complete NAPL depletion.
- 4. Bench scale accelerated weathering experiments (Liu 2004) highlight the relatively higher reduction rates in specific chemicals of interest as compared to bulk NAPL.

A R I S Thank You

See the <u>New ASTM Standard Guide</u> for full method descriptions, related technologies & data analysis, as well as case studies of method applications.

(publication expected towards the end of the year)

