

How Are Nitrogen Compounds Attenuating at Your Site? Implications for Site Remediation and Climate Change

Philip Dennis, Jeff Roberts, Savannah Volkoff and Eric Nesbit

Presented by: Phil Dennis RemTech, Banff, AB 13-Oct-22

Anthropogenic Sources of Nitrogen Compounds

Fertilizer Use and Production

NH₄ & NO₃ Essential But Need Management

- Bioavailable nitrogen essential plant nutrient primarily produced by Haber-Bosch process
- Nitrates are toxic to humans and regulated in groundwater
- Ammonium is toxic to fish + nitrate are aquatic nutrients that contribute to eutrophication-Aquatic dead zones
- Nitrous oxides are greenhouse gases and are a component of smog

N₂O a Significant Greenhouse Gas

Relative Global Warming Impact

- Carbon dioxide 74.4%
- Methane 17.3%
- Nitrous Oxide (N₂O) 6.2%
- Other 2.1%

$\rm N_2O$ responsible for ~6 % of global warming

Source "Our world in Data.org"

N-Compounds Play a Role in Eutrophication

Understanding Nitrogen Metabolism

- What form are nitrogen compounds in?
- Do you have suitable geochemistry to transform?
- Are sufficient nutrients available?
- Are suitable microbes present?
- Are N-compounds actually being transformed?
- What are the end products N₂? NO₃? N₂O? (greenhouse gas)

Overview DNA and Isotopic Methods Isotopes 15N/14N Who is there? N-Compound Transformation?

Quantitative PCR

Quantify specific pre-selected targets:

- Microbial., Nitrobacter, Anammox
- Functional genes e.g., ammonia monooxygenases, nitrite reductases

Compound Specific Isotope Analysis (CSIA)

Confirm contaminant degradation by enrichment of ¹⁵N + ¹⁸O indicating biotic N-Compound Transformation Processes

Next Generation Sequencing Characterize the entire microbial community

Molecular Biological Tools (MBTs) qPCR SiREM DNA Extraction QIAcube Next Gen Sequencing **SiREM** Samples Customer: Savannah Volkoff, Geosyntec Consultants Table 1d: Test Results

Microbial Community Profiles

Certificate of Analysis: Gene-Trac[®] NitroGen™ Ammonia Monooxygenase A Assay

> SIREM Reference: S-8258 Report Date: 4-Oct-21 Data Files: QS3A-amoA-QPCR-0102

Sample ID	Ammonia Monooxygenase A amoA (archaeal)		Ammonia Monooxygenase A amoA (bacterial)	
	Percent (2)	Gene Copies/Liter	Percent (2)	Gene Copies/Liter
MW-2-20210803	0.01 - 0.03 %	3 x 10 ⁵	NA	1 x 10 ⁴ U
MW-1-20210803	0.006 - 0.02 %	5 x 10 ⁴	NA	1 x 10 ⁴ U
INJ1-20210803	0.002 - 0.007 %	1 x 10 ⁵	NA	1 x 10 ⁴ U

See final page for notes

Quantify Specific Gene targets

Advantages of MBTs & Isotopes to Assess N-Transformation

Determining soil and water N-flux is challenging

- Flux events highly variable
- \circ End products (N₂O/N₂) gaseous and ubiquitous (N₂)
- Advantages of Isotopic methods
- \circ Integrate long term transformation via enriched $\delta^{15}N$ ^{18}O
- \circ δ¹⁵N ¹⁸O quantified in non-volatile NO₃ and NH₃
- Advantages of MBTs
- Microbes non-volatile, don't dissipate like gases
- MBTs very sensitive
- MBTs detect potential functions, even if not active
- Tracking populations over time is informative

Gas flux difficult to

• In denitrification, want full gene set, particularly *nosZ*, to prevent N_2O emissions.

Ratio of denitrification genes corelates with N₂O production

Study in Finnish Lakes (Saarenheimo et al., 2015) indicated that a high (nirS+nirK)/nosZ gene ratio led to increased N₂O production

Sirem

Former Fertilizer Plant (Wilmington, NC)

- Fertilizer plant 1930s-1982
- Petroleum and metals contamination
- 2018 GW ammonia ~ 83 mg/L
- NC groundwater standards NH₄⁺ 1.5 mg/L
- 2021 ammonia Results:
 - Max 31 mg/L
 - Min 9 mg/L

Data Summary NC Site

nors
otors
ietei s
<mark>en</mark> ™ uite

NC Site Nitrogen Pathways Molecular Biological Tools Summary

δ^{15} N Isotopes NC Site

Isotopes Indicate Ammonium transformation highest in downgradient monitoring wells

Fiorentino et al, 2014

Conclusions Former Fertilizer Plant NC

Ammonium declining 2018-2021. Dilution? Biotransformation? What pathways?

- Strong isotopic evidence for NH₄ transformation in downgradient MW wells
- Three potential N-metabolism pathways
- Denitrification using VFAs as electron donors -likely
- Anammox Co-transformation ammonium and nitrite-likely
- Nitrification potential source of nitrate/nitrite -redox not supportive?

Strategies for Remediation N-Compounds

- Oxygen addition biosparging/biopiles
- Nutrient addition (e⁻ donor/macro/micro-nutrients)
- Bioaugmentation-addition of microbes e.g., denitrifiers
- Remediation options can be tested and optimized in laboratory treatability studies

Conclusions

- Nitrogen compounds are widespread and have significant human heath and environmental impacts.
- Holistic approach to N-compound analytical including MBTs and isotopes leads to a better understanding of whether N-transformation is occurring and how.
- Better knowledge can lead to increased ability to manage and optimize N-compound remediation outcomes.

Thank you for your Attention! Questions?/Comments! Further Information

Phil Dennis, (<u>pdennis@siremlab.com</u>) 519-515-0836

siremlab.com Toll Free 1-866-251-1747

NitroGen[®]

ANALYTICAL SUITE

