AECOM Delivering a better world

IDENTIFY. RESOLVE.

DE-FLUORO™ Electrochemical Degradation of PFAS: Mass in Redundant Stocks of AFFF Concentrate and First Flush Washwater – Pilot-Scaled Field Demonstrations

Rachael Casson, Shangtao Laing, Rebecca Mora

John Santacroce

Agenda

- PFAS Dilemma
- Introducing DE-FLUORO™
- The DE-FLUORO[™] Journey
 - Proof of Concept
 - Real World Bench-Scale Trials
 - Wright-Patterson AFB Pilot Demonstration
 - MEG System Demonstration-First Flush
 - ORCA System Demonstration
- Q&A

Delivering a better world

PFAS Dilemma

ENVIRONMENT

The PFAS Treatment Dilemma

Basics:

- Per- and polyfluoroalkyl substances (PFAS) contain C-F bonds
- The C-F bond resists chemical, biological, and thermal destruction
- USEPA draft guidance identifies current commercial PFAS disposal options as: landfilling, deep well injection, or incineration

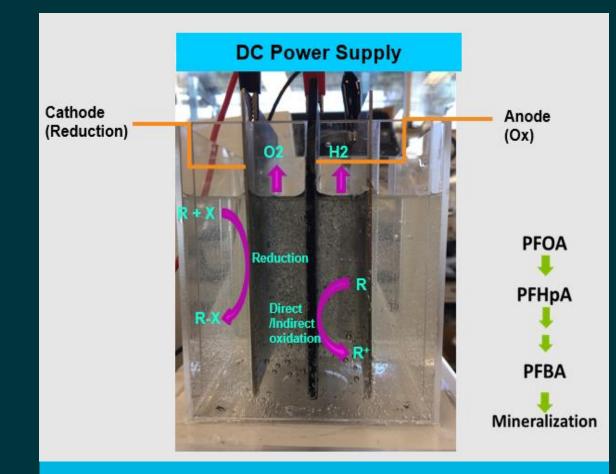
The Dilemma:

- Commercial PFAS treatment is primarily separation
- Destroying environmental contaminants is often favored because it is permanent and sustainable
- Thermal destruction via incineration is under scrutiny for emissions issues

The Solution:

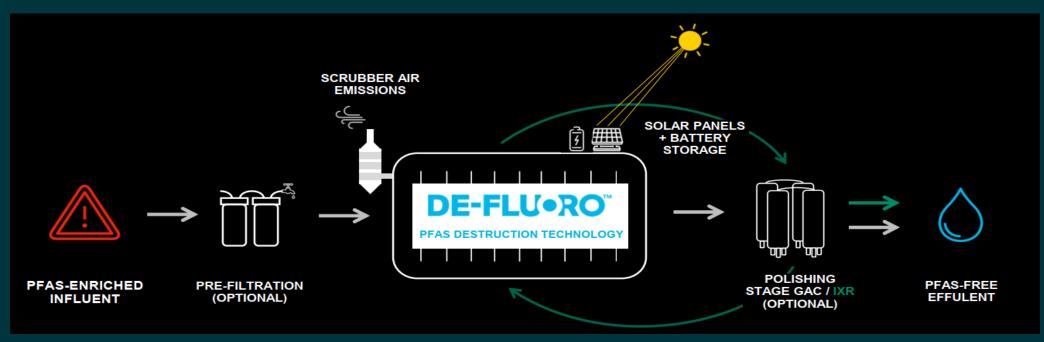
• Develop reliable destructive technologies that are commercially viable

Delivering a better world

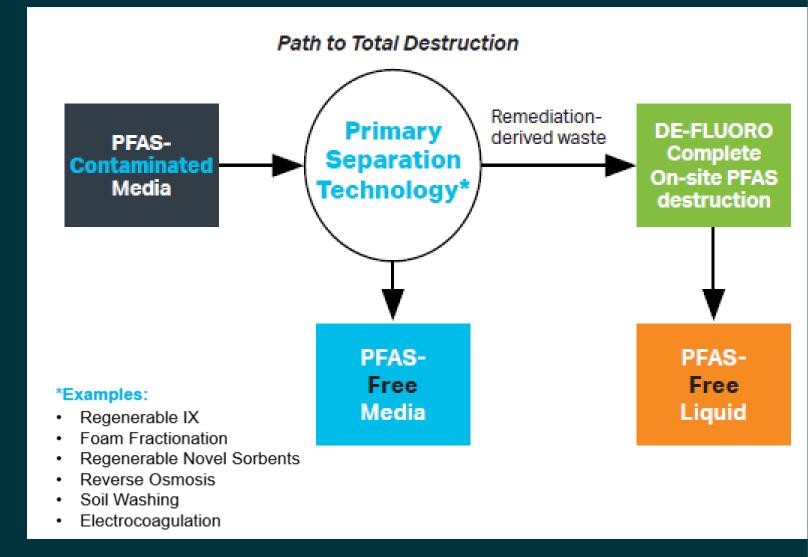


Introducing DE-FLUOROTM

Introducing DE-FLUORO[™] Electrochemical Oxidation Technology


- Electrochemical oxidation (EO) defluorinates and mineralizes short-chain and long-chain PFAS
- DE-FLUORO[™] utilizes a proprietary, high durability and low-cost electrode that can be in different sizes, forms and shapes for different applications
- **DE-FLUORO**[™] : Degradation and Electrochemical oxidation of per- and polyfluoroalkyl substances
- A compact, highly efficient, cost-effective mobile treatment unit for on-site PFAS destruction treatment
- It reduces environmental liability of transporting PFAS-impacted waste off site for treatment/disposal

DE-FLUORO[™] as Primary Treatment Technology

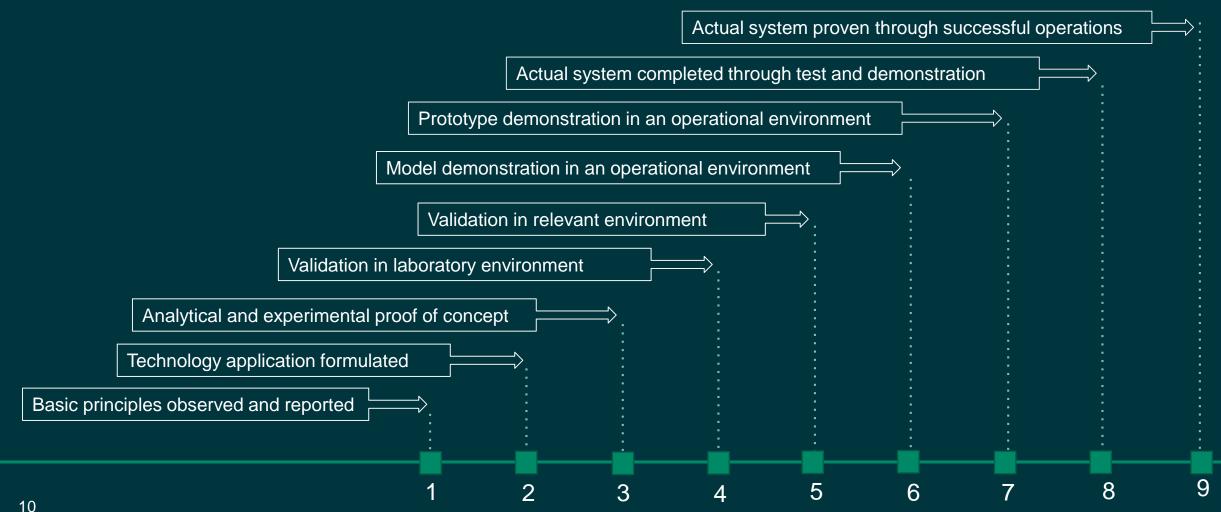

- Applicable for smaller volumes and higher PFAS concentrations (e.g., AFFF concentrate, AFFF rinsate, wastewater from FTAs, etc.)
- Can treat in batch or flow-through mode
- Polishing may be required to reach strict (single digit ppt) discharge levels

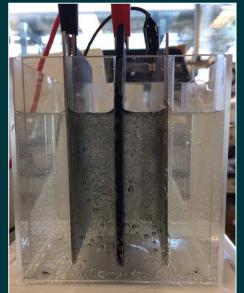
Coupling DE-FLUORO[™] with Separation Technologies

- Applicable for larger volumes and lower PFAS concentrations (e.g., groundwater, landfill leachate, etc.)
- Primary technology separates PFAS from the waste stream
- Primary technology typically generates a concentrated waste stream, with higher PFAS
- DE-FLUOROTM destroys PFAS in the concentrated waste stream

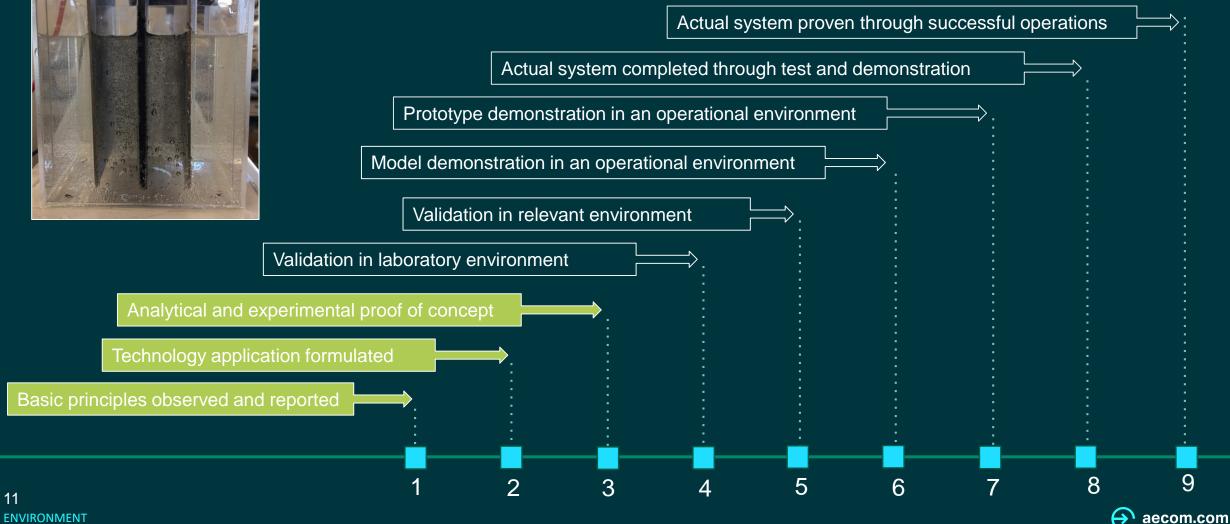
Coupling Approach

Delivering a better world

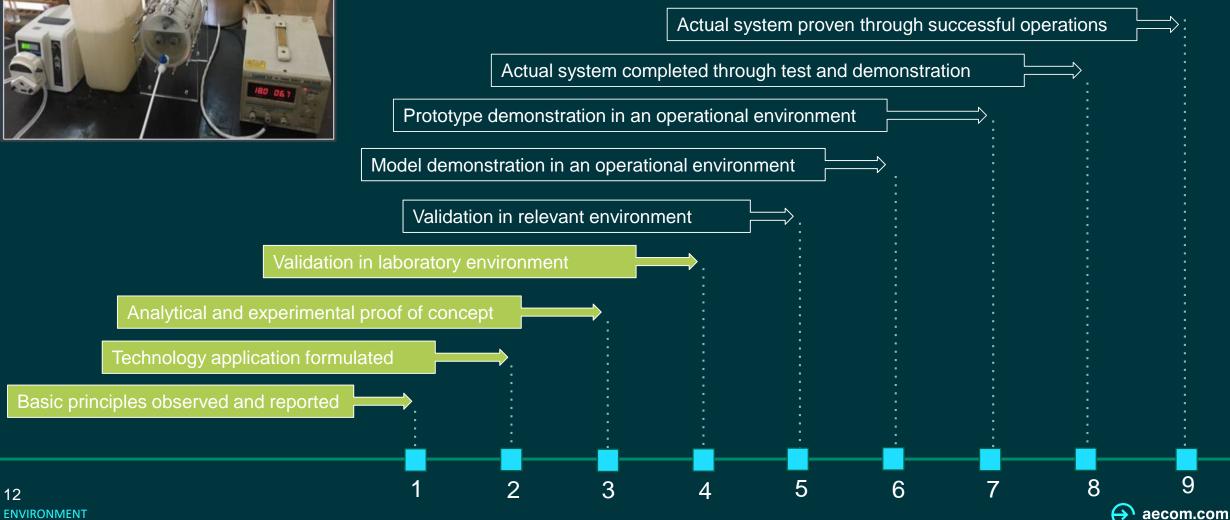

The DE-FLUORO[™] Journey

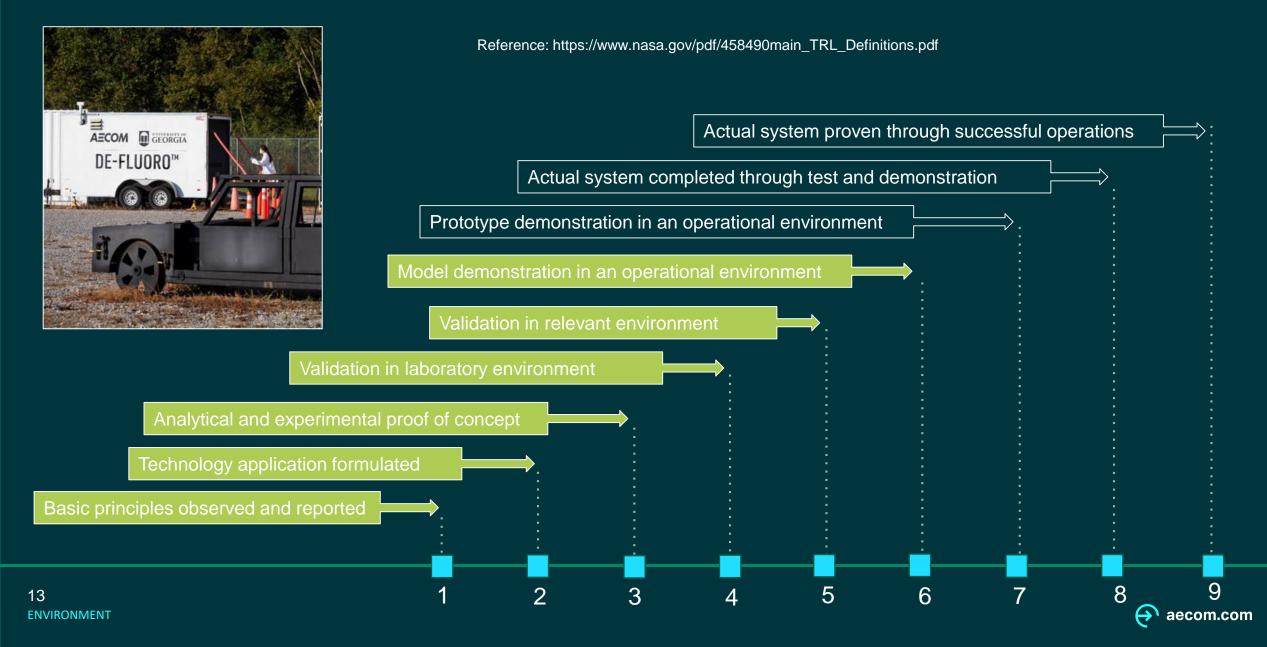


Reference: https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf


aecom.com

ENVIRONMENT

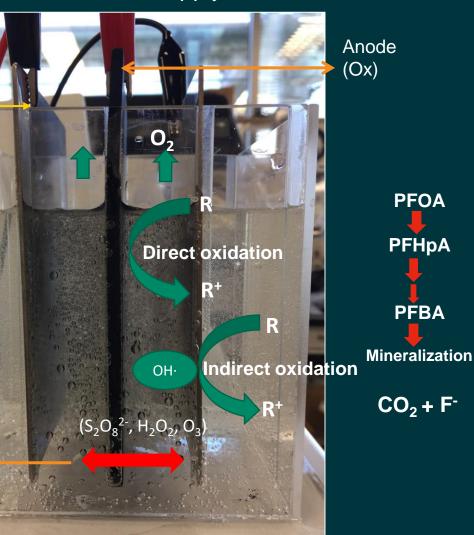



Reference: https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf

Reference: https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf

14

Reference: https://www.nasa.gov/pdf/458490main_TRL_Definitions.pdf


DE-FLUORO™ – Proof of Concept

Cathode _ (Red)

Mixing to increase mass transfer

DC Power Supply

PUBLICATIONS

- Lin, Hui, et al. "Development of macroporous Magnéli phase Ti4O7 ceramic materials: As an efficient anode for mineralization of poly-and perfluoroalkyl substances." Chemical Engineering Journal 354 (2018): 1058-1067.
- Liang, Shangtao, et al. "Electrochemical oxidation of PFOA and PFOS in concentrated waste streams." **Remediation Journal** 28.2 (2018): 127-134.
- Schaefer, Charles E., et al. "Electrochemical Transformations of Perfluoroalkyl Acid (PFAA) Precursors and PFAAs in Groundwater Impacted with Aqueous Film Forming Foams."
 Environmental science & technology (2018).
- Niu, Junfeng, et al. "Electrochemical oxidation of perfluorinated compounds in water" Chemosphere 146 (2016) 526-538
 - Schaefer, Charles E., et al. "Electrochemical treatment of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in groundwater impacted by aqueous film forming foams (AFFFs)." Journal of hazardous materials 295 (2015): 170-175.

Lin, Hui, et al. "Highly efficient and mild electrochemical mineralization of long-chain perfluorocarboxylic acids (C9–C10) by Ti/SnO2–Sb–Ce, Ti/SnO2–Sb/Ce–PbO2, and Ti/BDD electrodes." **Environmental Science & Technology** 47.22 (203): 13039-13046.

DE-FLUORO[™] – Bench-Scale Reactors

DE-FLUORO[™] Model 1 - NEMO

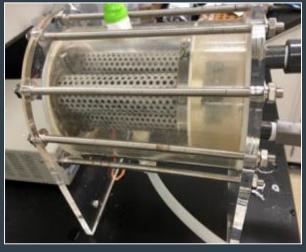



Plate Electrodes

- Batch mode
- Large Surface Area
- High reactivity

DE-FLUORO[™] Model 2 - JAWS

Membrane Electrodes

- Flow-through mode
- Large surface area
- Scalable

DE-FLUORO[™] – Validation in laboratory environment Summary of Results

Trial #	Sample Description	Initial Total PFAS Concentration (ug/L)*	(PFOA + PFOS) Mass Reduction	Total PFAS Mass Reduction*
1	AFFF concentrate / product	6,380,000	42.7%	60.0%
2	IX-R regenerant waste (brine)	408,590	98.5%	92.9%
3	Remediation derived wastewater-soil washing	13,600	100%	99.2%
4	Spent C6 AFFF solution	4,620	80.5%	83.3%
5	Remediation derived wastewater- ozone fractionation	1,590	98.9%	90.7%
6	Source area groundwater 1	455	100%	99.7%
7	Industrial groundwater	411	100%	99.5%
8	Source area groundwater 2	27.3	98.3%	83.8%
				~

ENVIRONMENT

* Based on measurable PFAS (27 PFAS compounds) 🔶 aecom.com

Wright-Patterson AFB Field Pilot Coupling with Concentration Technology

WPAFB - Field Pilot for Groundwater Treatment

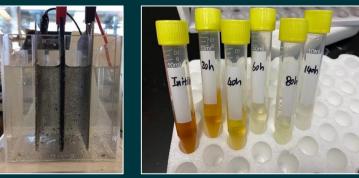
- IX-R groundwater treatment flow rate: 2 to 5 gpm
- Designed to treat 5,000 15,000 ppt total PFAS
- Treatment goal: PFOS + PFOA < 70 ppt (Hangar) and ND for PFOS (FTA)
- Treated ~500,000 gallons of groundwater over 5 months at two sites

WPAFB Field Pilot - Separation & Concentration

Feed Groundwater

Resin Regeneration and Distillation Equipment

Still Bottom Waste


WPAFB Field Pilot - Destruction

On-site pilot treatment

UGA Bench Treatment

Pilot EO Reactor

Bench EO Reactor

ecom.com

WPAFB Field Pilot - Results

Liang et al., 2022. Field demonstration of coupling ion-exchange resin with electrochemical oxidation for enhanced treatment of perand polyfluoroalkyl substances (PFAS) in groundwater. Chemical Engineering Journal Advances V9, <u>100216</u>

	■ SB1 ■ SB2	Long-chain PFAAs	PFAS precursors
80 -			
60 -			
40 -	Short-chain PFAAs		
20 -	R_ R		
0 -			
-20			
	60 - 40 - 20 -	100 = 100 $80 = 100$ $60 = 100$ $40 = 100$ $100 = 100$ $100 = 100$ $100 = 100$ $100 = 100$ $100 = 100$ $100 = 100$ $100 = 100$ $100 = 100$ $100 = 100$ $100 = 100$	Long-chain PFAAs 80 60 60 40 5hort-chain PFAAs 20 0 1 1 1 1 1 1 1 1 1 1 1 1 1

% R	% Reduction (C _t -C ₀)/C ₀			
	SB1	SB2		
PFBA	-4%	2%		
PFBS	-15%	-13%		
PFPeA	-10%	-10%		
PFPeS	-16%	13%		
PFHxA	-10%	-2%		
PFHpA	-20%	-4%		
PFHxS	-59%	-53%		
PFHpS	-93%	-94%		
PFOA	-82%	-80%		
PFOS	-88%	-98%		
6:2 FTS	-95%	-97%		
8:2 FTS	-74%	-83%		

- > Up to 82% reduction of PFOA and 98% reduction of PFOS using NEMO reactor
- > Degradation of short-chains was slower due to decarboxylation of long-chains and precursors
- Good replicability between batches
- With coupling approaches, DE-FLUORO™ effluent can be metered back to the influent of the primary technology

Megalodon Batch System

Orca Flow Through System

Mobile 20-foot container 240-liter reactors 100-300 amps

Demonstration Systems:

Used to optimize or for full-scale treatment

MEG

Mobile 40-foot container 300-liter reactor 1000-3000 amps EO/ER modes

DE-FLU•RO[®]

Client: Australian Defence

Treatment Solutions:

- First flush wastewater
- AFFF Concentrate

Origin of Solutions: Foam transition program

Objective: Treat to levels suitable for discharge to onsite water treatment system

Operator Requirement: Single operator supported through telemetry system

aecom.com

Experiment #	Treatment Sample	Initial (T0) TOF Mass	Initial (T0) regulated PFAS mass	Mass Reduction DE-FLUORO [™]	Pilot Efficacy Meet (~90% - 99% destruction rate)?
1	First Flush	6.975 g	PFOS – 0.020 g PFOA – 0.004 g PFHxS – 0.003 g	TOF – 81.1 % PFOS – 99.5% PFOA – 11.1 % PFHxS – 92.1 %	X V X
2	First Flush	2.565 g	PFOS – 0.013 g PFOA – 0.001 g PFHxS – 0.004 g	TOF – 62.1 % PFOS – 99.1% PFOA278 % PFHxS – 85.8 %	× × ×
3	First Flush	3.719 g	PFOS – 0.042 g PFOA – 0.002 g PFHxS – 0.012 g	TOF – 96.4 % PFOS – 99.9 % PFOA – 94.3 % PFHxS – 99.3 %	N N N N
4	AFFF Concentrate	3,870 g (3.87 kg)	PFOS – 0.275 g PFOA – 0.282 g PFHxS – 0.038 g	TOF – 76.9 % PFOS – 78.8 % PFOA794 % PFHxS – 71 %	X X X

 Θ

aecom.com

Successes

- Significant mass reduction within first 8 24 hours (suitable for discharge to WTP).
- Potential to run 24/7 with minimal to no supervision.
- Energy consumption 3-5 kilowatt hour/day. Possible to operate on solar power supplemented with a battery (contributing to ESG compliance and lower operational costs).
- Electrodes appear very durable.

Challenges

Batch System	Mitigation	Flow Through System
Excessive foaming	Sprinkler, antifoaming agent, vacuum extraction	Amended
Filter build up	Increase filtration, possible pre-treatment	Enhanced
Complex PFAS Chemistry (Transition PFAS (PFOA))	ER/EO sequential treatment, increase residence time and amperage input	Enhanced
Air emissions	Enhance vapour emission capture	Amended

Client: US DOD

Treatment Solutions:

- FTA wastewater
- Evaporator brine
- AFFF Concentrate

Origin of Solutions: Active fire training area

Objective: Treat increasingly complex AFFF-related wastes with very high PFAS concentrations

Operator Requirement: Single operator supported through telemetry system

What have we learned and what's next?

Demonstration learnings

- Coupling with concentration technologies makes groundwater treatment possible
- Stockpiled AFFF foaming requires careful flow management
- Energy supplementation via sustainable solar power and batteries is attractive
- Complex solutions containing PFAS can be treated
- What's Next?
 - Complete US ORCA system demonstration
 - Fluorine mass balance, optimal treatment times, energy usage evaluation
 - Promote application as fixed or mobile units
 - Develop models for deployment to broad range of client needs
 - Expand understanding through additional advanced field demonstrations, based on treatability testing

IDENTIFY. RESOLVE.

THANK YOU.

John Santacroce John.Santacroce@aecom.com

