

A MULTIDISCIPLINARY APPROACH TO REMEDIATE TETRACHLOROETHYLNE IMPACTS BENEATH A BUILDING

REMTECH EAST 2022

Prepared by: Kerry-Anne Pumphrey, M.Sc., EP, P.Geo., QP_{ESA} June 1, 2022

Introduction

Site Location

The Problem

The Solution.....

- Impacts are predominantly beneath the building
- Client wanted flexibility in order to:
 - Manage timing of remediation activities to match business finances
 - Reduce disturbance to tenants
 - Address potential off-site impacts
- The Plan -> ISCR
 - Direct injection of ZVI around the source zone
 - EHC-L ,emulsified soy lecithin substrate and soluble organo-iron powder (Fe²⁺), injected into dedicated injection wells throughout the plume zone

Remedial Injection Activities: ZVI Injection #1

Mixing ZVI Slurry

Geoprobe 420M Direct Injection

ZVI Daylighting

Remedial Injection Activities: EHC- L Injection

- Injected EHC-L into the dedicated injection wells one week after first round of ZVI direct injections
- 50% of the intended quantity of EHC-L injected
- Challenges overcoming pressure head in the injection wells
- Seals above the well screens were not holding
- Well seals were reinforced

Remedial Injection Activities: ZVI Injection #2

Second Attempt to Inject ZVI

- Up to 41% of the total intend quantity was injected
- Slurry was denser than the first round to prevent daylighting
- Daylighting still occurred
- Cracks were observed in the drywall on the first floor above the injection area
- All work stopped and tenanted areas closed

Crack Investigation

Crack Investigation: Engineers and Building Plans (oh my)

- Structural engineers assessed structural stability
 - Cracking was surficial (relief)
- Building plans were obtained from city archives
 - Foundations: Column and Strip Footings
 - Column above which dry wall cracking occurred was modified from its original design.

Crack Investigation: Engineers and Building Plans (oh my)

Crack Investigation: Engineers and Building Plans (oh my)

Geotechnical Assessment – HOW?

RECORD OF BOREHOLE No 19-2											Project Drilling Da	Project No.:0022.001.04 Drilling Date:8/23/2019									
Pr	oje	ct: (Geo	otechi	nical As	ses	ssme	ent									Drilling Me Hole Dian DATUM: -	ethod neter:	: Conti 50mm	nuous	Sampling
PERMIC CONE PENETRATION					PLASTIC NATURAL			RAL	LIQUID	SAMPLES				Γ	SOIL PROFILE		щ		<u>α</u>	REMARKS	
20 40 60 80 C SHEAR STRENGTH kPa • UCS • Poolat Peretorneter • In this Starr Union			WATER C		CONT W	V WL		UMBER	YPE	V VALUES	ECOVERY	TRAT PLOT	SOIL DESCRIPTION	EVATION SCA		EPTH (m)	ROUND WATE CONDITIONS	å GRAIN SIZE DISTRIBUTIO (%)			
50	10	0 15	50 2	200	kN/m ³		10	20 30 40	40	z	+		ď	00	GROUND SURFACE		Ē	DE	0	GR SA SI CI	
								19			,	ss	6		×	10cm CONCRETE black GRAVEL ZVI slurry	-		20 00 20 00		
								20			2	SS	8			loose	wet	- 1 -		SPT carried ou with 31.8kg hammer. N-values corrected to 63.5kg hamme	
								21			3	ss	8			FINE SAND with Sit to SiLTY FINE SAND layers of black ZVI					
								21			4	SS	3						- 2 -		
											5	SS	2								SS5: no recovery.
															Γ	END OF BOREHOLE AT 3.1	n				

Geotechnical Assessment Findings

- Depth to groundwater beneath the floor slab ranged: 0.3 to 0.6 m
- Poor drainage beneath the floor slab
- Soil compactness by SPT (no other equipment available would fit)
 - Loose soils (N<10) with some compact zones (N≤17) between loose soils
- Soil has poor bearing capacity (factored ULS 70 to 115 kPa)
- Column and strip footings are 0.6 m wide
 - Footing beneath affected column is less than 0.2 m wide if present at all
- Shallow embedment of footings

The MIA Footing

Plan to Move Forward

• Performance groundwater sampling indicated a reduction in concentrations

 Geotechnical engineer assisted us with modifying our injection method

Plan to Move Forward: Structural Support

Structural Engineer Design

The Executed Design

the second second

No Pressure/Gravity Feed EHC-L Injections

- EHC-L can be injected under gravity feed
- First attempt, two months after the ZVI injection was a success
- Subsequent attempt was not successful (not all of the EHC-L injected)
- Maple syrup method tried got more EHC-L but not quite enough

Can We Please Use Some Pressure?

Modified Injections

- EHC-L was doing okay
- Needed to give the dechlorination process a boost
- Bring in the bugs Dehalococcoides sp. or DHC in the form of KB-1 (SiREM)
- Tried injecting into the wells, still difficult
- Solution: direct injection into the ground starting at 3 m below the floor = SUCCESS

SEM images by the late Dr. Robert P. Apkarian and Jeanette Taylor, at the Integrated Microscopy & Microanalytical Facility (IM&MF), Department of Chemistry, Emory University, Atlanta, GA

Under (some) Pressure

90 Days Post EHC-L/KB-1 Injection Results

120 Days Post EHC-L/KB-1 Injection

GeneTrac Analysis

Sample ID	VC R	eductase	BAV1 VC	C Reductase	TCE Reductase		
	(1	vcrA)	(/	bvcA)	(tceA)		
	Percent	Gene	Percent	Gene	Percent	Gene	
	vcrA ⁽³⁾	Copies/Liter	bvcA ⁽³⁾	Copies/Liter	tceA ⁽³⁾	Copies/Liter	
MW-09-18	NA	1 x 10⁴ U	NA	1 x 10⁴ U	0.007 - 0.02 %	2 x 10⁵	
MW-08-16	0.0001 - 0.0004 %	2 x 10 ⁵	0.0006 - 0.0002 %	9 x 10⁴	0.0001 - 0.0004 %	2 x 10 ⁵	

VFA Analysis

VFAs contribute the hydrogen and carbon that is required by DHC to grow and breakdown chlorinated compounds

Analytical Results:

<10 mg/L VFA

DHC needs 100 mg/L VFA

Krzyżowski, Michał et al. "1 Repellent Effect of Volatile Fatty Acids on Lesser 2 Mealworm (Alphitobius diaperinus) 3." (2018).

What Next?

- In March 2022 we:
- Added more VFAs that will last longer -> EDS-ER
- Increase Dehalococcoides sp. population by adding more KB-1
- Direct injected as per prescribed pressures

And now we are waiting until 90 days have passed before our next round of performance monitoring and sampling.

What Did We Learn?

- Request and Review As Built Drawings of Building Foundations
- Complete a Pre-Injection Building Condition Assessment
- Request and Review Previous Geotechnical Assessments (soil bearing capacity)
- Document Soil Geotechnical Data When Conducting a Phase II/Two ESA
- COLLABORATE and COMMUNICATE with Your Project Team (contractor, technical specialists, client, colleagues etc.)
- Think Outside the Box and be Persistent

Acknowledgements

DownUnder Geotechnical

