GROUND & FORCE

Temporary and Mobile Water/Wastewater Treatment Systems for Successful Environmental Remediation – A Contractor's Perspective

Nishil Mohammed Ph.D.Project Manager – Technologies DivisionGround Force Environmental Corp. (GFEC)☑ nishilmohammed@gflenv.com🔊 +1-519-591-7057

PRESENTATION OUTLINE

Intro to GFEC

Water/Wastewater Treatment Systems

Technologies Available

Case Study

Contractor Perspectives

GFEC → SERVICES OFFERED

GROUND & FORCE

Bulk Excavation, Remediation & Restoration	Mass Excavation & Shoring	Interior/Industrial Site Remediation
Stormwater Management Pond Cleanouts & Creek Restoration	Bulk Materials Screening, Grinding & Crushes	Fuel Station Decommissioning
Underground Storage Tank Removals	Cutoff walls, slurry walls & Permeable Reactive Barriers	Facility Demolition & Decommissioning
In-Situ/Ex-Situ Remediation Services (Including Drilling)	Water/Wastewater Treatment Systems	Sub-Slab Vapour Intrusion Mitigation System Installation

GFEC → WATER/WASTEWATER TREATMENT

- Experienced water treatment contractors in Canada.
- A fleet of mobile water treatment systems that are ready to be setup and commissioned at to your project site within a very short timeframe.
- Possesses mobile environmental compliance approvals (ECAs)
 - Allows water/wastewater treatment and discharge to natural environment or city sanitary/sewers.
 - Capability to treat various contaminants at flow rates up to 1,000 GPM.
- Clients have relied upon our systems for the following applications:
 - Excavation dewatering
 - Emergency spill response
 - Pump-and-treat
 - Pump, treat, and re-inject
 - Automated chemical dosing/injection

Settling and Multi-Media Filtration for removal of total suspended solids (TSS).

2

Coagulation, **Flocculation** followed by **Sediment Filtration** for removal of TSS and metals.

Adsorptive filtration for removal of dissolved phase contaminants using various filter media such as granular activated carbon (GAC), organoclay, zeolite, or apatite.

GROUND & FORCE

Air stripping or advanced oxidation processes for removal of dissolved-phase contaminants.

Free-phase product recovery and separation using specialized extraction pumps and oil water separators.

- Membrane processes such as microfiltration, nanofiltration and reverse osmosis.
- Addition of chemical reagents, bio-stimulation compounds, or bioaugmentation cultures to re-circulated groundwater to promote in-situ remediation of the contaminant plume.
- Multi-phase extraction, air sparging, bio-sparging, and direct injection options.

CASE STUDY – REMEDIATION PROJECT

LOCATION: Remote Eastern Ontario

CLIENT: Confidential

GOAL: Water treatment system to pump, treat and discharge more than **250,000 m³** of dissolved metals impacted water in a wetland caused by a historical mining ore spill.

Contaminants of Concern (COCs): TSS, Copper, Zinc and Polyaromatic Hydrocarbons (PAHs).

Parameter	Units	Treated Water Objective
TSS	mg/L	< 25
рН	-	6.0 to 9.5
Copper	mg/L	< 0.0075
Zinc	mg/L	< 0.024

- Partnered with a leading equipment/technology provider Veolia Water Technologies Canada Inc. (VEOLIA) for treatability testing, process design and system commissioning.
- Chemically Enhanced Process: The metals are precipitated at high pH and separated from the water with the aid of coagulant, polymer and microsand.

Equipment Sizing:

- All the equipment on the water treatment chain is designed for the maximum hydraulic flow of 227.3 m³/hour.
- All the equipment on the sludge dewatering chain is designed for the maximum hydraulic flow of 24 m³/hour.

TREATABILITY TESTING

- Objective was to test the feasibility of chemical enhanced process to treat the dissolved metals impacted water from the site.
- Treatability Testing Procedure:

Step 1: Sample Collection

20 liters of contaminated raw water from the site was collected via grab sampling from the site.

The raw water was screened through a 1 mm screen to remove vegetation and coarse solids prior to testing.

TREATABILITY TESTING

Step 3: Actiflo® Clarification Testing

The procedure uses a standard Phipps & Bird jar tester and 1 L cylindrical beakers. The RPMs, time sequence of chemical/actisand and settling time are optimized for the desired full-scale operation.

Chemicals	Formula	Purpose
Alkali blend	Hydrex™ 9501	pH adjustment
Iron based coagulant	Hydrex™ 6253	Coagulation
Alum based coagulant	Hydrex™ 6240	Coagulation
Anionic polymer	Hydrex™ 6105	Flocculation
Actisand	HydrexTM	Ballast
Sulfuric Acid	H2SO4	pH neutralization

Step 5: Granular Activated Filtration Hydrotech filtered water was done on a filtration column, designed to closely reproduce a GAC filtration unit.

Step 4: Hydrotech Filtration

Water is filtered through the column at a set pressure head and water is collected at specified time points. The collected water is used for downstream analysis and the volume of water is calculated for up-scaling calculations.

TREATABILITY TESTING

- Course screening may be required if high levels of vegetation are expected in the raw water during the remediation process.
- ➤ The Iron based coagulant, HydrexTM 6353, was capable of achieving the objectives.
- A coagulant dosage of 37 mg/L is optimal to achieve the TSS, copper and zinc removal.
- ➤ Anionic polymer Hydrex[™] 6105 demonstrated excellent performance for TSS and metal precipitate removal. The recommended dosage is 1.0 mg/L.
- The Hydrotech Discfilter polished the clarified water and did not experience significant clogging of the filter cloth.
- The GAC removed the organic matter, copper complexes and produced a highquality final effluent.
- Low dosage of sulfuric acid can be applied to neutralize the pH.

Coagulant Dosage Optimization

Best performance of coagulant was achieved at a dosage of **37 mg/L**.

Polymer Dosage Optimization

Best performance of coagulant was achieved at a dosage of **1 mg/L**.

pH Neutralization

Acid was added from a starting point pH of 9.75 to a final pH of 8.46. The addition of **17.4 mg/L** of sulfuric acid decreased the pH to 8.73

Sludge Dewatering Chain:

- 1. Sludge splitter box after the clarifier system.
- 2. Dewatering using Geotube.
- 3. Dewatered sludge \rightarrow Slurry pit \rightarrow Solidified \rightarrow Offsite disposal.

- GFEC provided contracting support to mobilize, install, and commission the water treatment system and all associated pumps and hoses.
- Due to site access restrictions and limited space in the heavily wooded area of the site, the system had to be located more than 500 metres away from the dredging area.
- ➢ GFEC operated this system 24 x 7 at this remote site location.
- GFEC was responsible for the strict operational timelines.
- The treatment system was operated successfully to meet the required water quality guidelines and the treated water was discharged to a pristine cold lake.

PROJECT TIMELINE

ON-SITE TREATMENT SYSTEM

CONTRACTOR'S PERSPECTIVE

- Pre-qualify your contractor
 - Limit your risk.
 - $\circ~$ Work with experienced contractors to level playing field.
 - $\circ~$ Less potential for unexpected change orders.

Communicate impacts of the project with existing tenants.

- Work with sub-trades. i.e., Plumber, electrical, granular, concrete:
 - To ensure utilities are identified and supply is accessible.
 - To ensure fittings and materials that meets the specifications and guidelines are used.

ENVIRONMENTAL • A GFL COMPANY

- Technical engagement at the early stage
 - Understand site-specific water chemistry.
 - $\circ~$ Management of water treatment residuals.

On-site testing is key and only trained and experienced field professionals can carry out this.

Strategic planning to deal with unexpected delays and supply chain issues.

REFERENCES

- 1. https://www.rainforrent.co.uk/products/60m3-weir-tank/
- 2. https://www.bluewaterbio.com/filterclear/
- Teh, Chee Yang, et al. "Recent advancement of coagulation—flocculation and its application in wastewater treatment." Industrial & Engineering Chemistry Research 55.16 (2016): 4363-4389.
- 4. https://simple.wikipedia.org/wiki/Adsorption
- 5. https://www.emergency-wash.org/water/en/technologies/technology/granular-activatedcarbon-gac
- 6. https://frtr.gov/matrix/Air-Stripping-Ex-Situ/
- Buthiyappan, Archina, Abdul Raman Abdul Aziz, and Wan Mohd Ashri Wan Daud. "Recent advances and prospects of catalytic advanced oxidation process in treating textile effluents." Reviews in Chemical Engineering 32.1 (2016): 1-47.
- 8. https://p2infohouse.org/ref/07/06019.htm
- 9. https://www.youtube.com/watch?v=VoyrHzpENHg&ab_channel=SidneySecklerFerreiraFilho

Questions & Comments ???

Contact Us

Nishil Mohammed, Ph.D. Project Manager – Technologies Ground Force Environmental Corp. - A GFL Company M nishilmohammed@gflenv.com +1-519-591-7057

We'll See You On-Site!

