

ADVANTAGES IN THE APPLICATION OF THERMAL DESORPTION TUBES IN SOIL VAPOUR INVESTIGATIONS

Bryan Shaw, PhD., P.Chem. Senior Technical Support Scientist bshaw@caro.ca

AGENDA

□ Application of vapour data?

□ How is it tested?

□ TD tube advantages

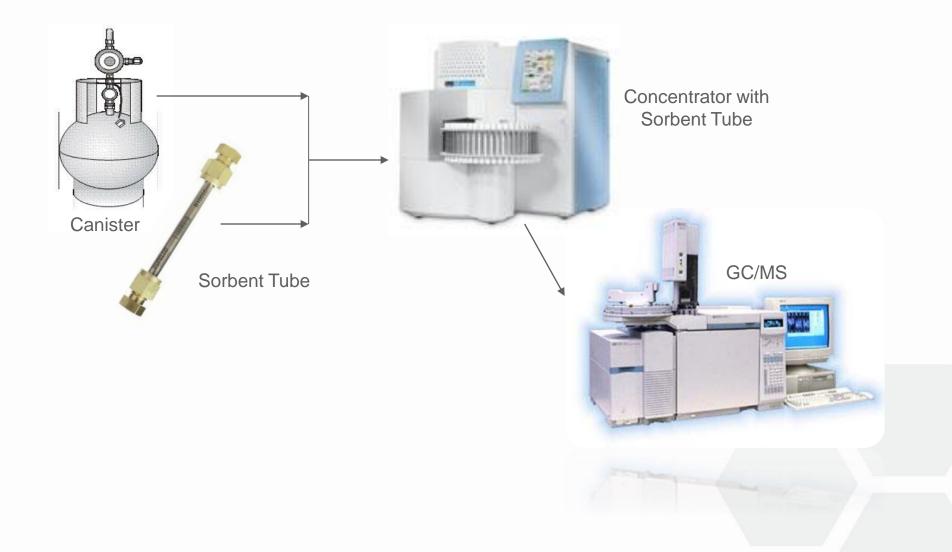
□ Sampling Tips

G FAQ

WHY TEST VAPOUR

As part of human health risk assessment, the soil vapour intrusion pathway is now commonly evaluated at contaminated sites where buildings are located near to subsurface volatiles chemicals.

- 2009 the BC Contaminated Sites Regulations introduced vapour as a regulated environmental medium.
- □ Alberta Tier 2 Requirements for Exposure Control


For Volatile contaminants where the risks are potentially associated with soil vapour concentrations, soil vapour must also be delineated for the site.

Commonly associated with dry cleaning, waste oil, diesel or gasoline site history.

- 1)BC MOE Technical Guidance 4 (2010)
- 2)CSAP Soil Vapour Advice and Practice Guidelines Development Stage 1 (2009)
- 3) Alberta Tier 2 Soil and Groundwater Remediation Guidelines (2016)
- 4) Guidance on Site Characterization for Evaluation of Soil Vapour Intrusion into Buildings (SABCS, 2010)

VAPOUR ANALYSIS

SUMMA CANISTER

Developed in **1965**:

More reliable than the alternative (Tedlar)

Multiple applications, including ambient air, soil vapour, exhaust streams... (optimal: C2 to C10)

Range in size: 1L to 6L common

Ideal for grab sampling; time weighted sampling is controlled by a valve

Whole air sample

THERMAL DESORPTION

TD Takes the Lab into the Field!

Based on tested and true technology: Hydrocarbon Traps

SVI[™] Developed in **2009** by CARO and Perkin Elmer!

Versatile due to size and analytical range (nC3 to nC22+)

Active Sampling (pump, manual, etc)

Multiple Adsorb/Desorb events possible (dilutions, rechecks..)

TD TUBE ADVANTAGE

Broadest Analytical Range

• Extend the current analyte range C3 – C24

Optimize Sampling Volumes

• Increase sampling volumes to achieve regulatory detection limits while enabling the re-collection of the sample if re-injection is required.

Minimize Moisture Effects

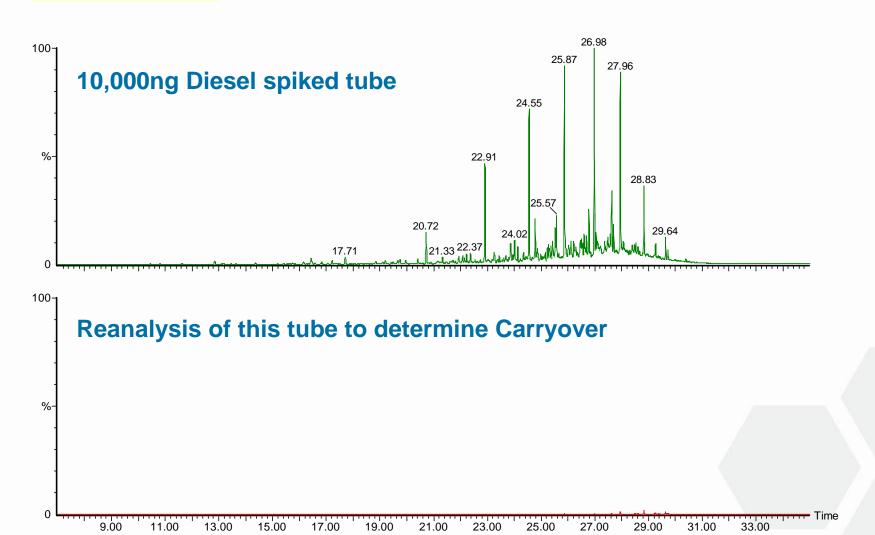
• Hydrophobic media : Lack of water retention minimizes sampling volumes while maintaining regulated DLs

Contamination Prevention

Enable quick clean-up of the tubes with no carry-over for re-sampling purposes

TARGET ANALYTES

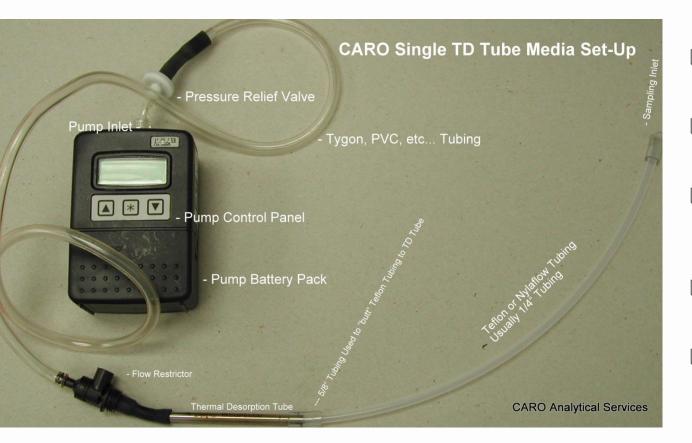
BCMOF CSR			Genera	l Nume	rical Vap	our Stan	dards		
Schedule 3.3 Substance	MRL Ag, UP, Res		P. Res	Com	mercial	Industrial		Parkade	
	μg	µg/m³	min vol (L)	µg/m³	min vol (L)	µg/m³	min vol (L)	µg/m³	min vol (L)
Volatile Organic Compounds (VOCs) – Therma	al Desorp	tion (TD)) Tube⁴					
Acetone	0.01	2,500	0.5	7,000	0.5	25,000	0.5	20,000	0.5
Acrylonitrile	0.001	0.5	2	0.5	2	1.5	0.7	1	1
Allyl chloride	0.001	1	1	3	0.5	9	0.5	8	0.5
Benzene	0.002	1.5	1.4	4	0.5	10	0.5	10	0.5
Bromobenzene	0.001	60	0.5	200	0.5	550	0.5	500	0.5
Bromodichloromethane	0.001	50	0.5	150	0.5	550	0.5	400	0.5
Bromoform	0.001	9	0.5	30	0.5	85	0.5	75	0.5
1,3-Butadiene	0.004	2	2	2	2	3	1.4	2.5	1.6
Carbon disulfide	0.01	700	0.5	2,000	0.5	6,500	0.5	5,500	0.5
Carbon tetrachloride	0.001	1.5	0.7	5	0.5	15	0.5	15	0.5
Chlorobenzene	0.001	10	0.5	30	0.5	90	0.5	80	0.5
Chloroethane	0.005	10,000	0.5	30,000	0.5	90,000	0.5	80,000	0.5
Chloroform	0.001	100	0.5	300	0.5	900	0.5	800	0.5
2-Chlorotoluene	0.002	50	0.5	150	0.5	550	0.5	400	0.5
n-Decane	0.003	2,500	0.5	8,000	0.5	25,000	0.5	20,000	0.5
1,2-Dibromo-3-chloropropane	0.001	1	1	1	1	2	0.5	1.5	0.7
Dibromochloromethane	0.001	50	0.5	150	0.5	550	0.5	400	0.5
1,2-Dibromoethane	0.0005	0.5	1	0.5	1	0.5	1	0.5	1
Dibromomethane	0.001	4	0.5	10	0.5	35	0.5	30	0.5
1,2-Dichlorobenzene	0.001	200	0.5	600	0.5	2,000	0.5	1,500	0.5
1,3-Dichlorobenzene	0.001	80	0.5	250	0.5	850	0.5	600	0.5
1,4-Dichlorobenzene	0.001	800	0.5	2,500	0.5	7,500	0.5	6,500	0.5
Dichlorodifluoromethane	0.002	100	0.5	300	0.5	900	0.5	800	0.5
1,1-Dichloroethane	0.001	500	0.5	1,500	0.5	4,500	0.5	4,000	0.5
1,2-Dichloroethane	0.001	5	0.5	15	0.5	45	0.5	40	0.5
1,1-Dichloroethylene	0.001	200	0.5	600	0.5	2,000	0.5	1,500	0.5
cis-1,2-Dichloroethylene	0.001	60	0.5	200	0.5	550	0.5	500	0.5
trans-1,2-Dichloroethylene	0.001	60	0.5	200	0.5	550	0.5	500	0.5
Dichloromethane	0.01	600	0.5	2,000	0.5	5,500	0.5	5,000	0.5
1,2-Dichloropropane	0.001	4	0.5	10	0.5	35	0.5	30	0.5
1,3-Dichloropropane	0.001	1.5	0.7	4	0.5	15	0.5	10	0.5
1,3-Dichloropropene, cis+trans	0.002	2.5	0.8	7.5	0.5	25	0.5	20	0.5
Diethyl ether	0.002	500	0.5	1,500	0.5	5,500	0.5	4,000	0.5
Ethyl acetate	0.005	70	0.5	200	0.5	650	0.5	550	0.5
Ethylbenzene	0.005	1,000	0.5	3,000	0.5	9,000	0.5	8,000	0.5
Ethyl methacrylate	0.001	300	0.5	900	0.5	2,500	0.5	2,500	0.5
Hexachlorobutadiene	0.001	1	1	1.5	0.7	4	0.5	3.5	0.5
Hexachloroethane	0.004	30	0.5	90	0.5	250	0.5	250	0.5
n-Hexane	0.01	700	0.5	2,000	0.5	6,500	0.5	5,500	0.5
Isopropylbenzene	0.001	400	0.5	1,000	0.5	3,500	0.5	3,000	0.5
Methacrylonitrile	0.001	30	0.5	90	0.5	250	0.5	250	0.5


CMOE CSR			Genera		rical Vap		uaius		
chedule 3.3 Substance	MRL	Ag, UP, Res		Commercial		Industrial		Parkade	
	μg	µg/m³	min vol (L)	µg/m³	min vol (L)	µg/m³	min vol (L)	µg/m³	mir (
olatile Organic Compounds (VOC	s) – Therma	al Desorp	tion (TD)) Tubeª					
(CONTINUED FROM PAGE 1)		1							
Methyl acrylate	0.005	20	0.5	60	0.5	200	0.5	150	0
Methyl cyclohexane	0.005	2,000	0.5	7,000	0.5	25,000	0.5	20,000	(
Methyl ethyl ketone (MEK)	0.005	5,000	0.5	15,000	0.5	45,000	0.5	40,000	(
Methyl isobutyl ketone (MIBK)	0.002	3,000	0.5	9,000	0.5	25,000	0.5	25,000	(
Methyl methacrylate	0.002	700	0.5	2,000	0.5	6,500	0.5	5,500	
Methyl tert-butyl ether (MTBE)	0.002	3,000	0.5	9,000	0.5	25,000	0.5	25,000	
Naphthalene	0.001	3	0.5	9	0.5	25	0.5	25	
Nitrobenzene	0.001	1	1	1	1	2.5	0.5	2	
Styrene	0.001	1,000	0.5	3,000	0.5	9,000	0.5	8,000	
1,1,1,2-Tetrachloroethane	0.001	1.5	0.7	4	0.5	10	0.5	10	
1,1,2,2-Tetrachloroethane	0.001	50	0.5	150	0.5	550	0.5	400	
Tetrachloroethylene (PERC)	0.005	40	0.5	100	0.5	350	0.5	300	
Tetrahydrofuran	0.001	3.5	0.5	10	0.5	30	0.5	25	
Toluene	0.01	5,000	0.5	15,000	0.5	45,000	0.5	40,000	
1,2,4-Trichlorobenzene	0.001	7	0.5	20	0.5	65	0.5	55	
1,1,1-Trichloroethane	0.001	5,000	0.5	15,000	0.5	45,000	0.5	40,000	
1,1,2-Trichloro-1,2,2-trifluoroethane	0.002	30,000	0.5	90,000	0.5	250,000	0.5	250,000	
1,1,2-Trichloroethane	0.001	0.5	2	0.6	1.7	2	0.5	1.5	
Trichloroethylene (TCE)	0.001	2	0.5	6	0.5	20	0.5	15	
Trichlorofluoromethane	0.001	700	0.5	2,000	0.5	6,500	0.5	5,500	
1,2,3-Trichloropropane	0.001	0.5	2	0.9	1.2	2.5	0.5	2.5	- (
1,2,4-Trimethylbenzene	0.005	7	0.8	20	0.5	65	0.5	55	
1,3,5-Trimethylbenzene	0.005	4.5	1.2	15	0.5	45	0.5	35	- (
Vinyl Chloride	0.002	1	2	3.5	0.6	10	0.5	9	
Xylenes, total	0.015	100	0.5	300	0.5	900	0.5	800	
VPHy *	2	1.000	2	3.000	0.7	11.500	0.5	8.000	

> 75 reportable analytes

CLEANING

Carryover <1%

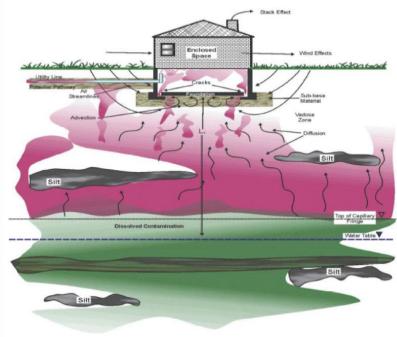

CARC) CANISTER VS. TD CLEANING

	SUM	MA CANIST	ERS	TD TUBES					
Chemical	Number Detects	Avg. Conc. (ug/m3)	Max. Conc. (ug/m3)	Number Detects	Avg. Conc. (ug/m3)	Max. Conc. (ug/m3)			
Benzene	100	0.046	0.52	59	<.001	0.0017			
PCE	30	0.063	0.3	81	<.001	0.0038			
TCE	79	0.055	1.43	11	<.001	0.0004			
VC	0	non detect	non detect	17	<.001	0.001			

Electric Power Research Institute. Reference Handbook for Site-Specific Assessment of Subsurface Vapor Intrusion in Indoor Air. (2005)

SAMPLING

□ Flow Rates: 20 - 200mL/min


□ Flow Δ > 10s cause pump to shutoff

- Sample flow in the direction indicated on the tube
- Purge tubes available upon request
- Max. Volume: 10L

SAMPLING BASICS

- How many times to samples, account for temperature, pressure, moisture. Seasonal variation
- Bottom-up approach recommended, deeper near contamination followed by subslab and then indoor if required.
- Leak testing/vacuum, Flow rate
- Inert material for well
- Well purging
- Field duplicates

Guidance on Site Characterization for Evaluation of Soil Vapour Intrusion into Buildings (SABCS, 2010)

GETTING STARTED

1. What Do I Test For?

Defining PCOCs

- Dry Cleaning, Gas/Diesel/Solvents
- Aromatic/Aliphatic Fractionation
- 2. Site Conditions & Expected Levels
 - Trace \rightarrow High Level
- 3. Sampling Volumes based on Reg. Limits
 - Typically 2 L or less
 - Flow rate typically 100-200 mL/min

GETTING STARTED

4. Field Records

- Sampling Information: Sample ID's, Pump ID's, TD Tube ID's, Flow data, Sampling Time
- Units: ug, ug/m3, ppmv (IH)

5. QC & Contingency

- Precision field duplicates
- Contamination ambient, field blank
- Breakthrough series sampling

6. Logistics & Equipment

- Timing: 24hr. 48hr. to prep
- Equipment needs: TD tubes, tubing.
- Flow and vacuum check

	nt Information nt:				Dat	e(s) 8:							
Pro	eot:												
Det	etalis:												
-	Conditions												
	ither:				_	mpera		c):					
з. ке	ulatory Level	Agricultural Commercia						ommend	ed volun	ne: 2L			
		🗆 Industrial (I											
Note	Recommended sam	ple volumes requir	ed to ach	ieve BC M	OE Sch	edule	11 Gen	eric Nume	rical Vap	our Standar	ds are		
anal	d on a clean site. If the store of the store	te site is contamin chieve the low dete	ated, sam action lim	its and as	such t	he dete	at the r ction 8	nits for o	ided level ertain par	s may excee ameters ma	y be		
cont	d. Lower sample vol act the lab to discuss	further.	inded at c	ontaminal	ed site	s with I	high Pl	D and/or 0	Sastech n	adings, ple	25-0		
4. Sar	npling Data												
	1	Location	Initial F	low Rate	Suggested Sampling Time		Semple	g Period	Total	Final Fin			
Pun			(ml. Iniet 1	Jmin)	Die I	(mins)	-	-	me)	Sampling	(mL/mi		
1	ID / Location	Tube ID, etc)	Tube:	Tube:	RL	CL	IL.	Start	Stop	(mins)	Triet I		
			_							-			
-		-											
	-		_					-					
	-												
Sha	ded fields to be com	sleted by CARO s	taff										
	ded fields to be comp			Rental Da									
P	ump Rented To:	ate:	_Pump I					Ens	al Calibra	tion by/date			
P In P O	ump Rented To:	ste:	_Pump I	ubes Ren Manome	ed :	Ro	R	Eturned:	ALCALIDIA	tion by/date condition: COC	: x		

OVERVIEW

Feature	TD Tubes
Active Sampling (Requires pump)	基
Optimize water management	Å
Passive Sampling	
VOC and sVOC suitability	基
Reliable RPDs	基
Flow rate monitoring	基
Simple transportation	基
Easy to clean	基
Surrogates as field QC	基

FAQ

1. What detection limits can you achieve? Designed for common regulatory requirements, can be fine tuned with increased volume.

2. Can I double check the reported data? Yes, the our process allows for recollection onto the tube post analysis.

3. Where do I get a pump?

We can supply pumps or you can supply your own.

4. Can the TD tube support indoor air sampling? Yes, we will lower the flow rate to allow for increased sampling times.

Q1: Ease of Use

1. Size and Weight

- **TD:** Small and compact.

2. Flow Monitoring

- **TD:** Field and laboratory checks
- **Summa:** Relying on valve integrity (leaks)
- 3. RPD Challenges
 - **TD:** Cleaned & Monitored

Q2: QUALITY OF DATA

1. Range of Quality Data

- Summa: Optimal between nC2 nC10
 **Challenges with heavier & polar analytes
- **TD**: Optimal between nC3 nC22+

2. Dynamic Range

• **TD:** Recollection and dilutions from full sample

3. Carryover/Contamination

- Summa: Condensation on Inner Walls: Affects Fuel Gases in particular & heavier analytes
- **TD:** Simple QC process to ensure tube quality

Q3: Quality Control

1. Surrogates

TD: Added to tube prior to sampling.
 **Assessment of potential BT

2. Vessel Cleaning & Proofing

- **TD:** Cleaned using high temp & flow as a part of the analysis
- 3. Blank Spike Duplicates
 - **TD:** monitors ability to adsorb, release and re-adsorb

<u>Contact Info</u> Bryan Shaw Senior Technical Support Scientist <u>bshaw@caro.ca</u>

QUESTIONS

Caring About Results... Obviously!

Richmond, BC | Burnaby, BC | Kelowna, BC | Edmonton, AB

Connect with CARO

Visit our blog for more updates, and awesome videos! <u>www.caro.ca/news</u>