APPROPRIATE USE OF DUST SUPPRESSANTS to achieve effective dust control for unpaved roads, construction sites and industrial sites

EnviroTech 2022 Xin Qiu & Amanda Allen April 21, 2022

SLR

TOPICS

- 1. Background
- 2. Selection of dust suppressants
- 3. Example of Applications
- 4. Conclusions

DUST

What is Dust?

- Dust, or Particulate Matter, is a general term for extremely small particles and liquid droplets in the atmosphere.
- PM_{2.5} fine particles
- PM₁₀ fine particles

What are common sources of Particulate Matter?

- burning fuels: wood, diesel combustion;
- crushing or grinding;
- dust from unpaved roads, construction sites and other disturbed land surfaces;
- industrial processes;
- Farming activities.

Why are we concerned?

 Breathing high levels of PM₁₀ or PM_{2.5} is harmful to lung tissue and aggravates asthma symptoms. Especially in sensitive groups such as the elderly, children, and people with respiratory illnesses.

HEALTH IMPACT

- Particle Pollution impacts the lungs and heart
 - Inhaled particles can pass from the lungs into the bloodstream and impact the cardiovascular system
- Impacts of short-term (acute) exposure:
 - Coughing
 - Shortness of breath
 - Tightness of the chest
 - Irritation of the eyes
 - Irregular heartbeat
- Impacts of long-term (chronic) exposure:
 - Reduced lung function
 - Development of respiratory diseases in children
 - Aggravation of existing heart and lung diseases (asthma)
 - Premature death of people with heart and lung disease

SAFETY IMPACT-VISIBILITY

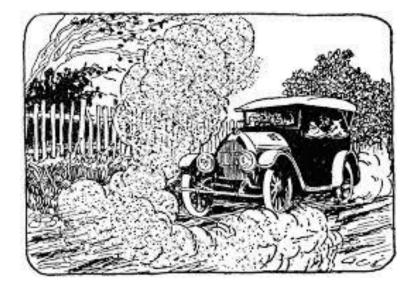
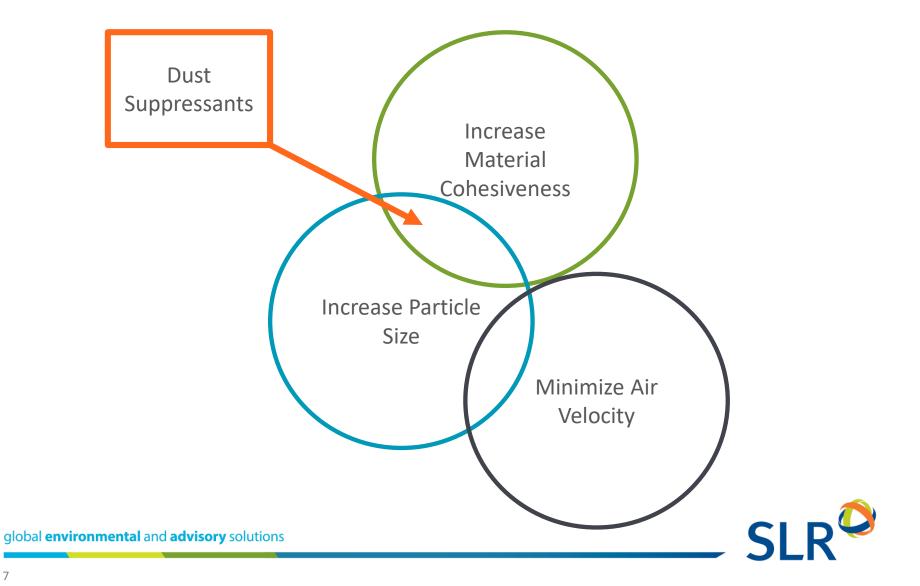


Image: <u>https://arizonadailyindependent.com/2016/07/19/blowing-dust-reducing-visibility-on-i-10-between-phoenix-and-tucson/</u> (July 19, 2016, article)


INDUSTRIAL USES BEYOND HEALTH AND SAFETY

- Road maintenance
 - Erosion increases the frequency and cost of road maintenance
 - Increased equipment ware and tear
- Sedimentation
 - Impacts to drainage systems
 - Impact to waterway and potential fish
 - Coating of plants
- Ambient Air Quality
 - Permit and regulatory compliance
 - Corporate citizenship/ license to operate
 - Complaint management

HOW DUST SUPPRESSANT WORKS

LIMITATIONS ON DUST CONTROL

- Construction sites, temporary roads, access points are generally temporary in nature
 - Costs to pave are not justified for short term use
 - Reclamation concerns
- Environmental Permits generally prohibit the use of anything other than fresh water
 - Need to secure appropriate water sources
 - Sustainability/ water conservation
 - Sufficient volumes (drought)
 - Permitting (can be long lead)
 - Cost of logistics
 - Access
 - Transport
 - Number of trucks needed
 - Ineffective
 - In dry conditions water may only work for short periods of time (15 minutes)
 - In cold conditions, water is not suitable as it will freeze and cause concerns with safety

SURVEY (DONE BY SRF CONSULTING GROUP, INC.)

1. Which of the following dust suppressants have you used?

Answer		Response Percent	Response Count
Water	10%	28	
	Calcium chloride brine and flakes	29%	82
Water absorbing	Magnesium chloride brine	26%	73
	Sodium chloride (salt)	3%	8
	Asphalt emulsions	4%	11
Organia natualaura anadust	Cutback asphalt (liquid asphalt)	3%	9
Organic petroleum product	Dust oils	3%	8
	Modified asphalt emulsions	2%	5
	Animal fats	0%	0
	Lignosulfonate	3%	8
Organic non-petroleum product	Molasses/sugar beet	1%	2
	Tall oil emulsions	0%	0
	Vegetable oils	3%	9
	Enzymes	1%	2
Electrochemical product	Ionic	0%	0
	Sulfonated oils	0%	0
Synthetic polymor product	Polyvinyl acetate	0%	1
Synthetic polymer product	Vinyl acrylic	0%	1
Class a delitiona	Bentonite	1%	4
Clay additives	Montmorillonite	0%	0
Recycle in place asphalt		4%	13
Recycled roof shingles		0%	1
Others		6%	17
Total			281

SURVEY (DONE BY SRF CONSULTING GROUP, INC.)

-		
Answer	Response	Response
Allower	Percent	Count
Past experience	38	48
Vendor	8	10
Material availability	9	11
Cost	29	37
Environmental issues	4	5
Experimental	3	3
Other (please specify)	9	11
Total		125

2. How do you decide what dust suppressant to use?

Beyond **Past Experience**, **Cost** is the only dominating factor to select a dust suppressant in the real world

COMMON FACTORS CONSIDERED TO SELECT A DUST SUPPRESSANT

- Direct cost compared to watering
- Past experience instead of scientific analysis
- Local environmental and regulatory requirements
- Accessibility

COMMONLY MISSED FACTORS TO SELECT AN APPROPRIATE DUST SUPPRESSANT

- Soil/dust analysis (dust particle size, plasticity, etc.)
- Resisting wear by traffic or wind erosion
- Remaining on the road or exposed surface
- Resisting aging
- Surface wetting of material substrate
- Climate and weather conditions
- Cost-benefit life-cycle consideration

TYPE OF SUPPRESSANTS

- Water
- Water Absorbing Products (deliquescent/hydroscopic)
 - calcium chloride brine and flakes
 - magnesium chloride brine
 - sodium chloride (salt)
- Organic Petroleum Products
 - asphalt emulsions
 - cutback asphalt (liquid asphalt)
 - dust oils
 - modified asphalt emulsions
- Organic Nonpetroleum Products
 - animal fats
 - lignosulfonate
 - molasses/sugar beet extracts
 - tall oil emulsions
 - vegetable oils

- Electrochemical Products (Concentrated Liquid Stabilizers)
 - enzymes
 - ionic products
 - sulfonated oils
- Synthetic Polymer Products
 - polyvinyl acetate
 - vinyl acrylic
 - synthetic fluid and synthetic fluid with binder
 - Clay Additives

- bentonite
- montmorillonite

DUST SUPPRESSANT SELECTION CHART*

	Traffic	Volumes, Daily Traff		Surface Material			Climate During Traffic							
	Light	Medium 100 to	Heavy >250	Plas	ticity I	ndex	Fine	s (Passir	ng 75μm	, No. 200	, Sieve)	Wet &/or	Damp	Dry
Dust Palliative	<100	250	(1)	<3	3–8	>8	<5	5–10	10–20	20–30	>30	Rainy	to Dry	(2)
Calcium Chloride	√ √	~~	~	X	~	~~	X	1	11	1	X (3)	X (3,4)	11	X
Magnesium Chloride	√ √	<i>√ √</i>	~	X	1	√ √	X	~	<i>√ √</i>	1	X (3)	X (3,4)	11	\checkmark
Petroleum	~	1	~	11	1	x	✓ (5)	1	✓ (6)	X	X	✓ (3)	11	\checkmark
Lignin	√ √	11	~	X	1	√ √ (6)	X	1	<i>√ √</i>	11	✓ (3,6)	X (4)	11	11
Tall Oil	√ √	1	X	11	1	x	X	1	√ √ (6)	✓ (6)	X	1	11	11
Vegetable Oils	~	X	X	\checkmark	1	~	x	~	1	X	X	X	~	\checkmark
Electro-chemical	√ √	~	~	X	1	√ √	x	1	<i>√ √</i>	11	$\checkmark\checkmark$	✓ (3,4)	~	\checkmark
Synthetic Polymers	√ √	~	X	<i>√ √</i>	1	x	x	$\checkmark\checkmark$	√√ (6)	X	X	1	11	<i>√ √</i>
Clay Additives (6)	√ √	~	X	<i>√ √</i>	√ √	1	√√	~	~	X	X	X (3)	~	√ √

Legend

$$\checkmark \checkmark = \text{Good} \qquad \checkmark = \text{Fair} \qquad \cancel{X} = \text{Poor}$$

*UCPRC 2017: Guidelines for the Selection, Specification, and Application of Chemical Dust Control and Stabilization Treatments on Unpaved Roads

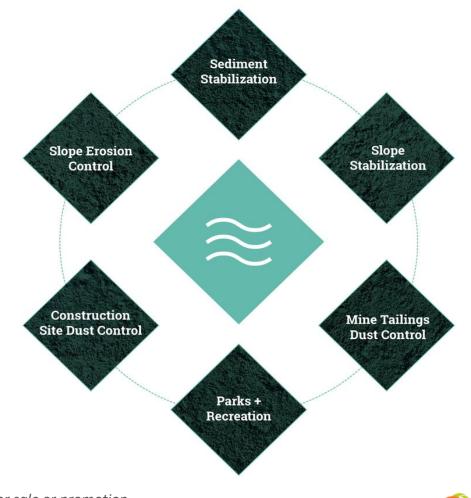
COMPARISONS OF DUST SUPPRESSION TECHNOLOGIES

Chemistry	Intangible	Intangible & Immeasurable				
	Frequency	Safety Environment	Ease of Cleanup	Other		
Water	Multi/day	X-tra Traffic Wet/slippery	Yes	Muddy, Morale		
Oils/Tar Emul	7-14 days	Slippery Run-off (PAHs)	No, Morale	Oil base, Non- renewable		
Ca/MgCl ₂	30-45 days	Toxic	Yes	Highly corrosive!		
Humectant & Organic Poly	30-120 days	Bio-degrades	Yes	Renewable resource		

ChemTreat's Steel Industry Water Conference 8-2 to 8-3-2016 , Blytheville Arkansas

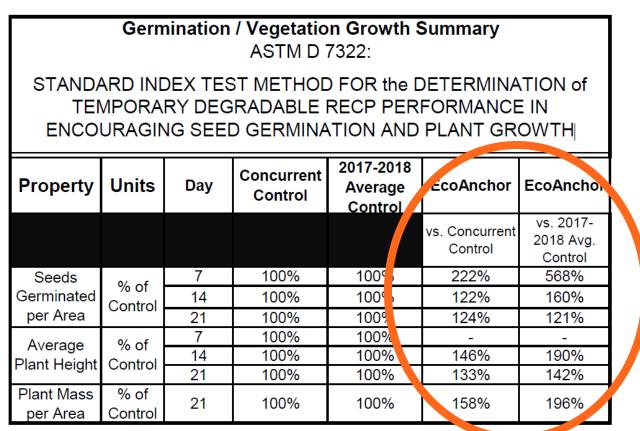
CHEMICAL TREATMENT CATEGORY USES

Category	Sub-Category	Use
Water and water	Water	 Short-term dust control
with surfactants	Water with surfactant	 Short-term dust control
Water absorbing	Calcium chloride	Fines preservation/dust control
	Magnesium chloride	Fines preservation/dust control
	Sodium chloride brine	 Fines preservation/dust control
Organic non-	Glycerin/glyceride based	Fines preservation/dust control
petroleum	Lignosulfonate	Fines preservation/dust control
	Molasses/sugar	Fines preservation/dust control
	Plant oil	Fines preservation/dust control
	Tall oil pitch rosin	Fines preservation/dust control
Organic petroleum	Asphalt emulsion	• Stabilization/all-weather passability if mixed into top 6 in. (150 mm)
		 Fines preservation/dust control
	Base and mineral oils	Fines preservation/dust control
	Petroleum resin	Fines preservation/dust control
		• Stabilization/all-weather passability if mixed into top 6 in. (150 mm)
	Synthetic fluid	 Fines preservation/dust control
	Synthetic fluid plus binder	 Fines preservation/dust control
		• Stabilization/all-weather passability if mixed into top 6 in. (150 mm)
Synthetic polymer	Typically polyvinyl	 Fines preservation/dust control
emulsion	acrylate, polyvinyl acetate,	• Stabilization/all-weather passability if mixed into top 6 in. (150 mm)
	polyvinyl chlorate, or	
	styrene-butadiene-styrene	
	based	
Concentrated liquid	High acidity	Stabilization/all-weather passability if mixed into top 6 in. (150 mm)
stabilizers	Low acidity/enzyme	• Stabilization/all-weather passability if mixed into top 6 in. (150 mm)
Mechanical	Bentonite or suitable	Mechanical stabilization
stabilization	locally available clay	 Fines preservation/dust control


CONSIDERING ENVIRONMENT FRIENDLY

Synthetic fluid	 Must meet EPA environmental-based criteria for synthetic (sediment 	
-	toxicity, biodegradability, PAH content, aquatic toxicity, and oil sheen	
	free)	
	 Impacts to water quality: none. May be a concern if large volumes are 	
	spilled	
	 Impacts to fresh water aquatic biota: none 	
	 Impacts to plants: none 	
	 Impacts to mammals: none 	
	 Potential concerns with spills 	
Synthetic fluid plus binder	 Impacts are dependent on specific binder chemistry but combination 	
	usually still meets EPA environmental based criteria for synthetic	
	 Impacts to water quality: none expected 	
	 Impacts to fresh water aquatic biota: none expected 	
	 Impacts to plants: none expected 	
	 Impacts to mammals: none expected 	
	 Potential concerns with spills 	
Typically polyvinyl	 Limited documented research on environmental impacts 	
acrylate, polyvinyl acetate,	 Impacts are dependent on specific product chemistry 	
polyvinyl chlorate, or	 Chemical analysis and results of environmental testing from an 	
styrene-butadiene-styrene	accredited laboratory should be requested	
based	 Impacts to water quality: none expected. May be a concern if large 	
	volumes are spilled.	
	 Impacts to fresh water aquatic biota: none expected 	
	 Impacts to plants: none expected 	
	Impacts to mammals: none expected	
	 Potential concern with spills 	
ental and advisory solutions	SI	R
	J	

EXAMPLE OF SUPPRESSANTS - ECOANCHOR*


- EcoAnchor is in a form of liquid copolymer
- Environment friendly
- Designed for non-traffic erosion and dust control
- Hydraulically applied for erosion control and dust suppression.
- Outperforms traditional methods, including erosion blankets-and it does so at a fraction of the cost.

*Disclaimer: Does not represent any commercial products for sale or promotion.

GERMINATION FIELD TESTS – ECOANCHOR*

• TRI/Environmental, Inc. (TRI) performed biotic soil amendment testing (2017-2018).

*Disclaimer: Does not represent any commercial products for sale or promotion.

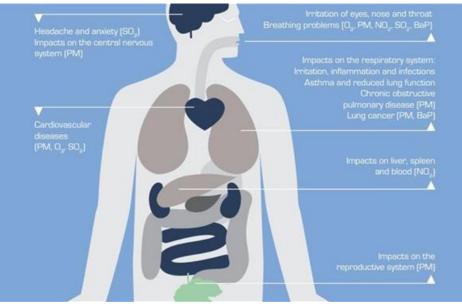
COST-BENEFIT CONSIDERATION - ECOANCHOR*

- EcoAnchor is a hydraulically applied copolymer dispersion designed to control erosion & dust on non-traffic areas. This liquid copolymer creates an environmentally friendly membrane by binding the soil particles together, reducing the turbidity of runoff water.
- Once cured, EcoAnchor's unique membrane structure prevents water erosion, while still allowing moisture and oxygen to permeate through the soil. Soil moisture is also maintained for longer durations, which protects both the soil and vegetation from rapid dehydration.
- The savings from <u>reducing seed loss due to erosion, promoting</u> <u>germination and reducing dust</u> could largely compensate the cost of dust suppressant applications, from life-cycle point of view.

*Disclaimer: Does not represent any commercial products for sale or promotion. global **environmental** and **advisory** solutions

CONCLUSIONS

- Dust suppressant is the use of water alone or in conjunction with specialized nonhazardous chemicals to wet and 'agglomerate' or bind small particles together preventing them from becoming airborne
- There are many kinds of dust suppressants. To select an appropriate product, consideration should include not only the cost, but also life-cycle cost-benefit from environmental to productivities.
- Recent development of eco-friendly, synthetic polymer or copolymer, synthetic fluid + binder, may provide a new cost-saving option other than traditional water absorbing products (e.g., CaCl₂, MgCl₂)


ADVANTAGE AND DISADVANTAGE OF DIFFERENT APPLICATIONS

	Pros	Cons
Water	 Least expensive Limited carryover effect is possible When good mixture of water and material is possible, quite effective 	 Some materials can't tolerate excess moisture or repel water Can't use in freezing temperatures Large volumes of water and over wetting is common Water evaporates – reapplication is necessary
Surfactants	 Efficiency can be higher than water Equivalent efficiency may be using less water 	 Not all materials tolerate surfactants Material is contaminated with surfactants Capital, operating and maintenance costs
Foam	 Best efficiency when effective mixing of foam and material can be achieved Moisture addition is low 	 Material is contaminated with foam Compressed air is usually required Capital, operating and maintenance costs
Binders	 Eliminates the need for re- application Better efficiency Applied at multiple transfer points 	 Nozzle and equipment maintenance Capital, operating and maintenance costs

HEALTH IMPACT

- Exposure to particle pollution is a public health hazard
- When inhaled, particle pollution can travel deep into the lungs and cause or aggravate heart and lung diseases. Exposure to particle pollution causes increases in:
 - Doctor and emergency room visits
 - Hospital admissions
 - Use of prescription medication
 - Absences from work and school

QUESTIONS?

