

➔ Joann Dyson, Ph.D. NAPL Specialist

Evaluating NSZD

→ via the biogenic heat method at complex sites

OR...

Why doesn't my NSZD data look anything like the published data?

Agenda

- Overview of NSZD
- Common measurement methods
- Biogenic heat method
- Case study
- Discussion

Photo courtesy of Julio Zimbron / E-Flux LLC

Overview of NSZD

From API's Quantification of Vapor Phase-Related Natural Source Zone Depletion Processes, First Edition (API 4784, May 2017)

NSZD overview

- Natural source zone depletion (NSZD)
- All petroleum degradation processes: dissolution, volatilization, biodegradation
- Reduces LNAPL mass in the subsurface
- Occurs throughout the LNAPL body
- Degradation of all hydrocarbons in the LNAPL
- Always occurring
- Ultimate LNAPL depletion process

KEY PROCESSES

NSZD overview

- Methanogenesis typically dominates
- Methane aerobically oxidized in the vadose zone
- The gaseous expression can be used to estimate LNAPL mass losses
- Methane oxidation exothermic reaction

Common measurement methods

Measurement methods: vapor phase

- Measurement of O_2 , CH_4 and/or CO_2 gas(es)
 - Surface CO₂ efflux methods
 - Dynamic flux chamber (DCC)
 - Passive CO₂ Traps
 - Subsurface soil gases
 - Soil gas gradient method
- Conversion to LNAPL degradation rate using assumed stoichiometry
- Must correct for background

Measurement methods: temperature

- Biogenic heat method
- Methane oxidation exothermic process
- Temperature anomalies (order of 1-2°C)
- Background correction
- Conversion to NSZD rate using heats of reaction and assumed stoichiometry

Petroleum hydrocarbon and methane oxidation zone (from ITRC LNAPL-3, 2018)

(ITRC LNAPL-3, 2018)

- Determine subsurface temperature profiles
- Multiple depths through methane-oxidation zone
- Existing wells or dedicated installations
- Short-term snapshot data (thermocouple)
- Longer-term average (temperature loggers)
- Background correction

⁽from CRC-CARE Tech Report 44)

- From CRC-CARE Technical Report 44
 - Data collection and NSZD rate calculations
- As measured temperature profiles (uncorrected)
- Background well (blue)
- Two LNAPL zone wells (black and red)

⁽from CRC-CARE Tech Report 44)

NSZD rate determination

Determine temperature gradients (up & down)

 $(\Delta T/\Delta z)_{upward} + (\Delta T/\Delta z)_{downward}$

 Heat flux = (thermal conductivity of soil/rock) x (temperature gradient)

$$q_{T} = -K_{T} \left[(\Delta T / \Delta z)_{upward} + (\Delta T / \Delta z)_{downward} \right]$$

$$R_{NSZD} = q_T / \Delta H_{rxn}$$

where ΔH_{rxn} = -48 kJ per gram of hydrocarbon

(from Sweeney & Ririe 2014)

Case study

Case Study: Site History

- Australian site
- Former bulk fuel depot
- Historic releases above and below ground piping
- Impermeable ground cover
- Typical soils: clay, sandy clay, sand

Case Study

Case Study

Case Study

Location	Temp gradient dT/dz			Heat Flux q	NSZD Rate	NSZD Rate	NSZD Rate
	(C/m)		(C/m)	(J/m2/s)	(g/m2/s)	(L/m2/yr)	(U.S. gal/
	Up	Down	Total				acre/yr)
MW04	0.06	0.05	0.11	0.16	0.0000034	0.143	153
MW08	0.24	0.32	0.56	0.78	0.0000167	0.713	762
MW21	0.09	0.00	0.09	0.12	0.0000027	0.113	121
MW22	0.10	0.09	0.19	0.26	0.0000056	0.238	254
MW23	0.08	0.09	0.18	0.25	0.0000053	0.224	240
MW26	0.09	0.02	0.11	0.15	0.0000033	0.139	149
				Avera	ge NSZD Rate:	0.262	280

Discussion

- NSZD processes have been identified at sites with fine-grained soils using the biogenic heat method.
- It may be necessary to use soil logs to interpret the temperature profiles.
- It's anticipated that only using the temperature anomaly in a limited portion of the well is a more conservative approach to determining the NSZD rate.
- We are continuing to analyze thermocouple and temperature logger data at complex sites and welcome discussion of others' successes and lessons learned.

Discussion

joann.dyson@ghd.com

***** Thank You

