Treating 1,4-Dioxane with Activated Potassium Persulfate

RemTech 2021

Stacey Telesz

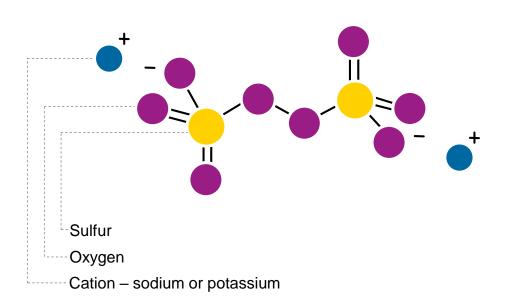
Evonik Active Oxygens, LLC

Technical Manager Western Region

It's Official!

PeroxyChem, LLC is now Evonik Active Oxygens, LLC

Evonik Soil & Groundwater Remediation


remediation@evonik.com

www.evonik.com/remediation

All Klozur[®] persulfates release the persulfate anion

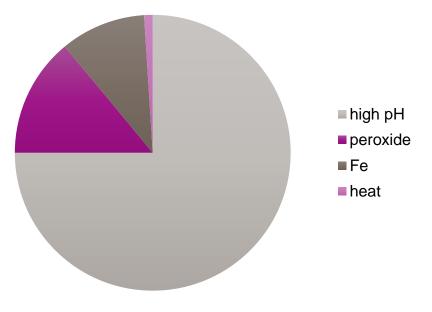
- Sodium and potassium persulfate are used in environmental remediation applications
- A strong oxidant
- Activation results in the formation of oxidative and reductive radicals
- Applicable across a broad range of contaminants
- Extended subsurface lifetime (weeks to months)
- Little to no gas evolution

Free Radical Chemistry:

Persulfates produce free radicals in many diverse reaction situations

 $S_2O_8^{-2}$ + activator \longrightarrow SO_4^{-2} + (SO_4^{-2} or SO_4^{-2})

Activation produces a radical which is more powerful and kinetically fast


Klozur[®] Persulfate Degradation Pathways

Oxidative	Either	Reductive	
	PCE, TCE, DCE and VC		
Petroleum Hydrocarbons		Carbon Tetrachloride	
MGP Residuals	Chlorobenzenes	1,1,1-Trichloroethane	
BTEX	Phenols	Dichloroethanes	
	Select Pesticides	Select Pesticides	
PAHs	Select Fluorinated Compounds		
Oxygenates	-	Select Energetics	
1 4 Dioxono	PCBs		
1,4-Dioxane	Select Energetics		
Activation I	Methods: Alkaline, Hydrogen Peroxide, and	d Heat	
Activation Method: Iror	n Chelate		

Klozur[®] Activation Technologies

Estimated Activator Usage

Purchase of Klozur[®] persulfate includes with it the grant of a limited license under Evonik's patents covering the use of Klozur[®] persulfate for environmental applications at no additional cost to the buyer.

- Alkaline Activation
 - More Compatible with carbon steel
 - Oxidants and reductants
- Klozur[®] One / Iron-Chelate Activated Persulfate
 - Chlorinated ethenes and petroleum hydrocarbons
 - Oxidative pathway
- Heat
 - Polishing step after thermal treatment
 - Oxidants and reductants
- Hydrogen Peroxide
 - Sites that benefit from rapid and vigorous reaction with both hydrogen peroxide and sodium persulfate
 - Oxidants and reductants

Klozur[®] Persulfate Differences between Sodium and Potassium Persulfates

KLOZUR[®]SP

Environmental Grade Sodium Persulfate

KLOZUR[®] KP

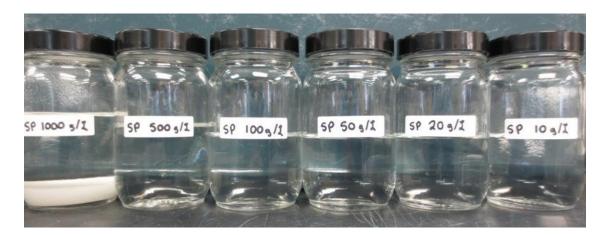
Environmental Grade Potassium Persulfate

Key Differences:

- Solubility
- Na⁺ vs K⁺ residual

Temperature	Klozu	ır [®] SP	Klozur [®] KP		
(C)	wt%	g/L	wt%	g/L	
0	36.5	480	1.6	17	
10	40.1	540	2.6	29	
20	41.8	570	4.5	47	
25	42.3	580	5.7	59	

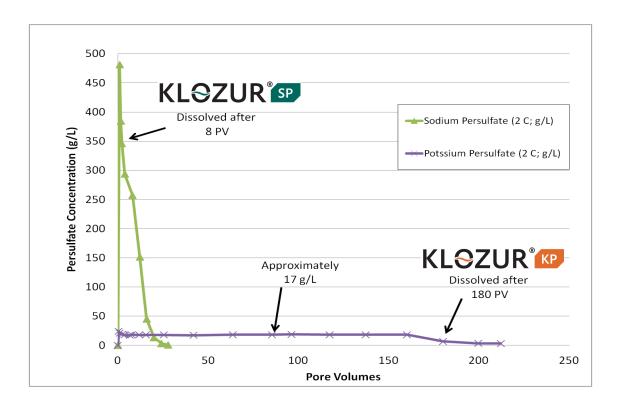
Characteristic	Klozur [®] SP	Klozur [®] KP
Formula	$Na_2S_2O_8$	$K_2S_2O_8$
Molecular Weight	238.1	270.3
Color	White	White
Loose Bulk Density (g/cc)	1.12	1.30



Klozur[®] Persulfate Solubility Limited Release: Static System

Reactors at ~20°C Klozur KP Solubility = 47 g/L

Reactors at ~20°C Klozur SP Solubility = 570 g/L


7

Klozur[®] Persulfate Dissolution Column Study

Dissolution of Persulfate

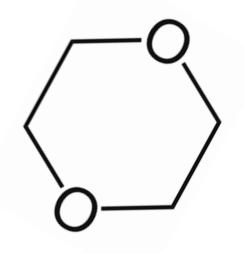
- 2 °C

- Klozur SP
 - Peak at theoretical maximum
- Klozur KP
 - Sustained at theoretical maximum

Klozur [®] SP	Klozur [®] KP
 Alkaline Activation Injection: 25% NaOH Soil Mixing: 25% NaOH, Ca(OH)₂, Portland cement 	 Alkaline Activation Slurry Injection: Ca(OH) 2 Soil Mixing: 25% NaOH, Ca(OH)2, Portland cement
 Iron chelate Activators Fe-citrate, Fe-lactate, FeEDTA 	 Zero Valent Iron Separate, down gradient Vigorous reaction with persulfate

Why is 1,4-Dioxane different from other contaminants?

It *REALLY* likes water...


- Polar compound
- Once in water, it wants to stay there

Its often co-mingled with other contaminants that have very different characteristics.

- TCE
- 1,1,1-TCA

Partitioning coefficients:

- Log K_{ow} = -0.27
- K_{oc} = 17
- Henry's Coefficent:
 4.8 x 10⁻⁶ atm m³/mole

10

Why is 1,4-Dioxane Different Soil-Groundwater Partitioning

Assuming F_{oc} of 0.005 (5,000 mg/Kg):

- 1,4-Dioxane is usually primarily in the aqueous phase
 - Some K_{oc} estimates lower than 17 which would result in higher percentage in aqueous phase
- Other contaminants are primarily sorbed to soil
- K_d is the soil/groundwater distribution coefficient.

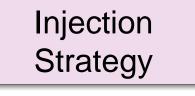
$$K_{d} = Koc * foc = \frac{Soil\left(\frac{g}{Kg}\right)}{GW\left(\frac{g}{L}\right)}$$

Contaminant	K _{oc}	F _{oc}	Contaminant Distribution (%)			
			GW	Soil		
1,4-Dioxane	17		70%	30%		
1,1,1-TCA	110		27%	73%		
1,2-DCA	38		51%	49%		
1,1-DCA	53		43%	57%		
DCE	38		51%	49%		
Benzene	59		40%	60%		
Toluene	182	0.005	18%	82%		
Ethylbenzene	363		10%	90%		
Xylene	386		9%	91%		
TCE	166		19%	81%		
Carbon Tetrachloride	174		19%	81%		
1,2-Dichlorobenzene	617		6%	94%		
Dieldrin	21,380		0%	100%		
Note:	1. Assuming 1.5 g/cm ³ soil bulk density and effective pore volume of 0.15					
	2. EPA Technical Fact Sheet: 1,4-Dioxane, Nov 2017 https://semspub.epa.gov/work/HQ/175223.pdf on 9/23/2021					

Establishing Contact

- Contaminant partitioning between soil and groundwater largely dependent upon fraction of organic carbon on soil (F_{oc})
- 1,4-Dioxane tends to be in aqueous phase more than other contaminants

		F _{oc} = 0.02			F _{oc} = 0.005		F _{oc} = 0.0001			
Contaminant	K _{oc}	K _d	Contaminant Distribution (%)		К _d	Contaminant Distribution (%)		K _d	Contaminant Distribution (%)	
		a	GW	Soil	• *d	GW	Soil	• °d	GW	Soil
1,4-Dioxane	17	0.34	37%	63%	0.08	70%	30%	0.00	99%	1%
TCE	166	3.32	6%	94%	0.83	19%	81%	0.02	92%	8%
1,1,1-TCA	110	2.20	8%	92%	0.55	27%	73%	0.01	95%	5%
DCE	38	0.76	21%	79%	0.19	51%	49%	0.00	98%	2%
1,1-DCA	53	1.07	16%	84%	0.27	43%	57%	0.01	97%	3%
1,2-DCA	38	0.76	21%	79%	0.19	51%	49%	0.00	98%	2%


KLOZUR[®]SP

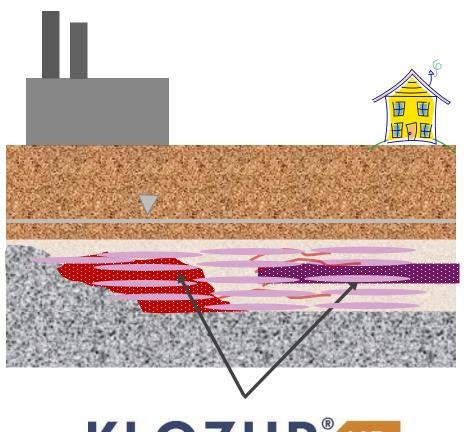
Aqueous Reagents

Aqueous Contaminants

Aqueous and Solid Reagents "Solid" Contaminants

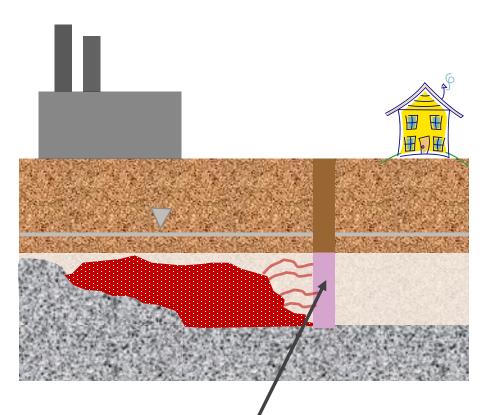
KLOZUR[®] KP "Solid" Reagents

Aqueous and "Solid" Contaminants



13

Fracture in a Grid or PRB Injection


Grid Application

Hydrated lime activator (typical)

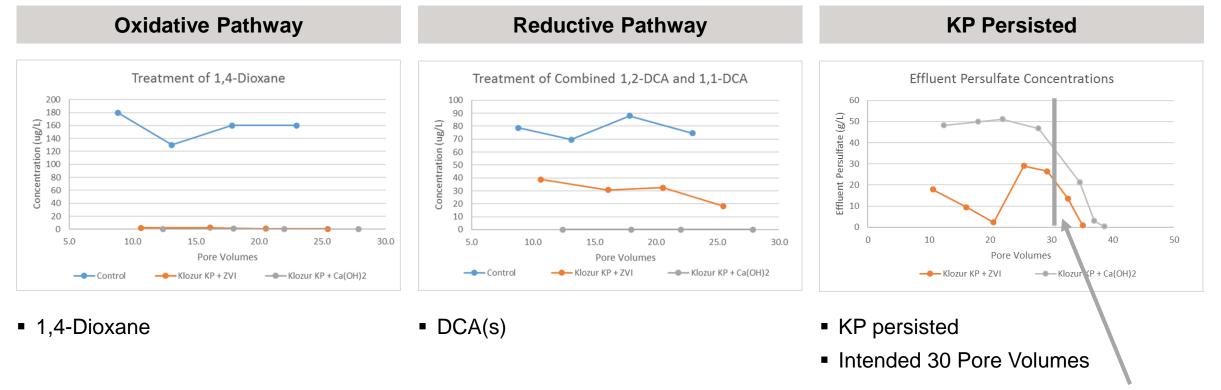
Permeable Reactive Barrier (PRB)

Hydrated lime activator (typical)

- Establishes contact
 - Typically, more rapid treatment
- Low permeable material
- Minimizes impact of site heterogeneity
- Homogenizes soil and contaminant
- Can be combined with ISS

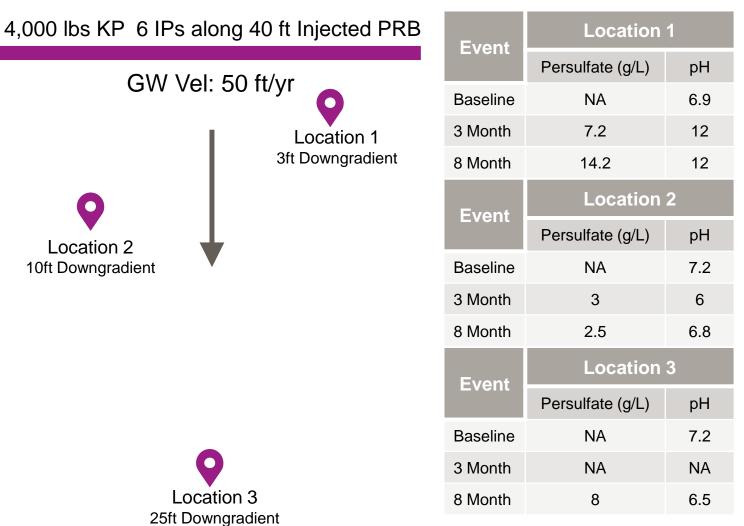
Courtesy of Bill Lang

Case Study: Treatment of 1,4-Dioxane with Klozur[®] KP

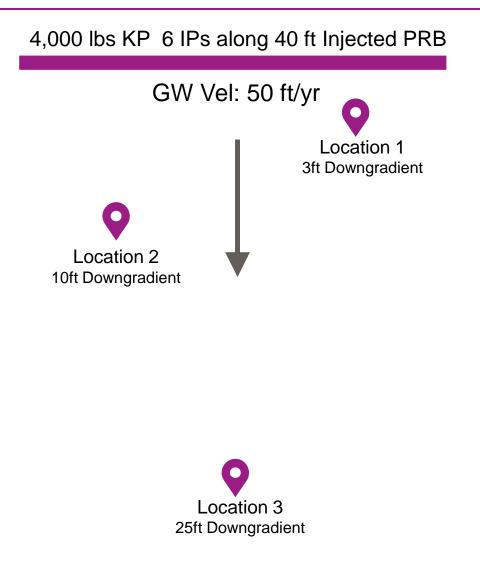


1,4-Dioxane Case Study Former Industrial Facility in the Northeast

- Consultant: AECOM
- Injection Contractor: Pilot-ERFS; Full Scale-ISOTEC
- Residual 1,4-dioxane, TCA, and TCA daughter products
 - 1,1,1-Trichloroethane and 1,1,2-Trichloroethane (TCAs)
 - 1,1-DCA and 1,2-DCA
 - 1,1-DCE
- Silty soils with sand lenses
- Klozur[®] KP PRB selected to establish contact with aqueous phase reagents

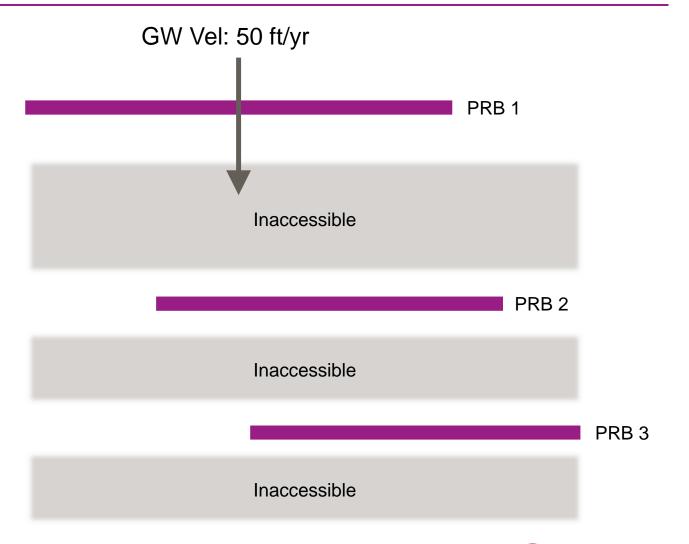


Design Volume


1,4-Dioxane Case Study Pilot Study

- Pilot Conducted Early December 2017
- Injected PRB (40 ft)
 - Solid slurry
 - 6 DPT points
 - 20 to 30 ft bgs
 - Designed for 6 month persistence
- Reagents:
 - Klozur[®] KP
 - Klozur® SP
 - Hydrated Lime
 - 25% NaOH

1,4-Dioxane Case Study Treatment Results


	Location 1: Contaminant Concentrations (µg/L)								
Event	DCA	DCE	1,4-Dioxane	VOCs*	Reduction VOCs (%)				
Baseline	21	40	30	115	0%				
3 Month	0.2	ND	ND	0.2	99.8%				
6 Month	0.2	ND	ND	0.2	99.8%				
	Location 2: Contaminant Concentrations (µg/L)								
Event	DCA	DCE	1,4-Dioxane	VOCs*	Reduction VOCs (%)				
Baseline	44	72 55 184		184	0%				
3 Month	10	11	ND	26	86%				
6 Month	16	ND	16	34	82%				
	Locat	ion 3: Conta	minant Con	centrations	(µg/L)				
Event	DCA	DCE	1,4-Dioxane	VOCs*	Reduction VOCs (%)				
Baseline	89	270	200	610	0%				
3 Month	46	82	69	216	65%				
6 Month	63	30	110	230	62%				
*Detected VOCs	not including acet	one							

[internal]

1,4-Dioxane Case Study Full Scale

- Ongoing
- Three transects/PRBs
- Largely targeting 1,4-dioxane
- Cut off source long enough and clean inaccessible zones

- 1. 1,4-Dioxane and common comingled contaminants have been successfully treated by alkaline activated persulfate
- 2. 1,4-Dioxane prefers aqueous phase compared to most common contaminants
 - Keys to establishing contact
- 3. Klozur[®] KP can be used as solid-state oxidant to treat aqueous phase contaminants
- 4. Klozur[®] SP can still be used if contact can be established

Questions?

Stacey Telesz Technical Manager – Western Region Evonik Active Oxygens, LLC Stacey.Telesz@evonik.com

Brant Smith, PhD, PE Director of Technology Evonik Active Oxygens, LLC brant.smith@evonik.com

Evonik Active Oxygens, LLC Soil & Groundwater Remediation remediation@evonik.com www.evonik.com/remediation

