

TOTAL ORGANIC FLUORINE (TOF) BY COMBUSTION ION CHROMATOGRAPHY

A New Tool for Monitoring PFAS Impacts

Terry Obal, Lusine Khachatryan, Alicia Wilson and Heather Lord

ENVIRONMENTAL INTEREST IN PFAS

THE EVOLUTION OF THE PFAS "TOOLKIT"

PFAS by LC/MS/MS (as received)

Neutron Activation Analysis (NAA)

Combustion Ion Chromatography (CIC)

Total Organic Fluorine (TOF)

PFAS (individual)

Total Oxidizable Precursors (TOPs) Assay

PFAS BY LC/MS/MS (TARGET COMPOUNDS): REGULATORY COMPLIANCE

Jurisdiction		PFOA (μg/L)	PFOS (μg/L)	PFBA (μg/L)	PFBS (μg/L)	PFHxS (μg/L)	PFPeA (μg/L)	PFHxA (μg/L)	PFHpA (μg/L)	PFNA (μg/L)	GenX (µg/L)
Drinking Water									^		
Health Canada ⁽²⁾	Screening Value	0.2	0.6	30	15	0.6	0.2	0.2	0.2	0.02	N/V
British Columbia	BC CSR	0.2	0.3	N/V	80	N/V	N/V	N/V	N/V	N/V	N/V
Atlantic RBCA EQS	Human Health	0.2	0.6	30	15	0.6	0.2	0.2	0.2	0.02	N/V
U.S.A - EPA	Health Advisory	0.07	0.07	N/V	N/V	N/V	N/V	N/V	N/V	N/V	N/V
U.S.A. – Minnesota	HBV	0.035	0.027	7	3	0.027	N/V	N/V	N/V	N/V	N/V
U.S.A. – New Jersey	MCL	0.014	0.013	N/V	N/V	N/V	N/V	N/V	N/V	0.013	N/V
U.S.A. – N. Carolina	IMAC	2	N/V	N/V	N/V	N/V	N/V	N/V	N/V	N/V	0.14
Europe – UK	HBV	10	0.3	N/V	N/V	N/V	N/V	N/V	N/V	N/V	N/V
Australia	HBV	0.56	0.07	N/V	N/V	0.07	N/V	N/V	N/V	N/V	N/V

⁽¹⁾ Sources: ITRC PFAS Regulations, Guidance and Advisories Fact Sheet (June 2018)

⁽²⁾ Protection of Human Health - [PFOS]/SV_{PFOS} + [PFOA]/SV_{PFOA}
$$\leq$$
 1

⁽³⁾ Highlighted values have not yet been promulgated

TARGET PFAS <u>AND PRECURSORS</u> BY LC/MS/MS (TOPS ASSAY): REGULATORY COMPLIANCE + INDICATION OF OTHER PFAS

Maxxam Job		RESULTS							
Maxxam ID									
Sampling Date		2019/08/02							
Client Sample ID									
Parameter	Units	Pre Oxidation Concentration	RDL	QC Batch	Post Oxidation Concentration	RDL	QC Batch	Difference in Pre and Post Oxidation Concentration	QC Batch
Perfluorobutanoic acid	μg/L	4.3	0.80	6282486	1100	100	6309573	1100	6274728
Perfluoropentanoic Acid (PFPeA)	μg/L	3.2	0.80	6282486	1400	100	6309573	1400	6274728
Perfluorohexanoic Acid (PFHxA)	μg/L	9.7	0.80	6282486	1200	100	6309573	1200	6274728
Perfluoroheptanoic Acid (PFHpA)	μg/L	4.2	0.80	6282486	1100	100	6309573	1100	6274728
Perfluorooctanoic Acid (PFOA)	μg/L	6.4	0.80	6282486	650	100	6309573	640	6274728
Perfluorononanoic Acid (PFNA)	μg/L	ND	0.80	6282486	310	10	6309573	310	6274728
Perfluorodecanoic Acid (PFDA)	ug/L	1.2	0.80	6282486	170	10	6309573	170	6274728
Perfluoroundecanoic Acid (PFUnA)	μg/L	ND	0.80	6282486	97	10	6309573	97	6274728
Perfluorododecanoic Acid (PFDoA)	μg/L	ND	0.80	6282486	54	10	6309573	54	6274728
Perfluorotridecanoic Acid	μg/L	ND	0.80	6282486	30	10	6309573	30	6274728
Perfluorotetradecanoic Acid	μg/L	ND	0.80	6282486	19	10	6309573	19	6274728
Perfluorobutanesulfonic Acid (PFBS)	μg/L	2.2	0.80	6282486	ND	10	6309573	<rdl (post-oxidation)<="" td=""><td>6274728</td></rdl>	6274728
Perfluorohexanesulfonic Acid (PFHxS)	μg/L	8.9	0.80	6282486	ND	10	6309573	<rdl (post-oxidation)<="" td=""><td>6274728</td></rdl>	6274728
Perfluoroheptanesulfonic Acid	μg/L	0.99	0.80	6282486	ND	10	6309573	<rdl (post-oxidation)<="" td=""><td>6274728</td></rdl>	6274728
Perfluorooctanesulfonic Acid (PFOS)	μg/L	58	8.0	6282486	51	10	6309573	-7	6274728
Perfluorodecanesulfonic Acid	μg/L	ND	0.80	6282486	ND	10	6309573	<rdl (post-oxidation)<="" td=""><td>6274728</td></rdl>	6274728
Perfluorooctane Sulfonamide (PFOSA)	μg/L	ND	0.80	6282486	ND	10	6309573	<rdl (post-oxidation)<="" td=""><td>6274728</td></rdl>	6274728
EtFOSA	μg/L	ND	0.80	6282486	NR	10	6309573	NR	6274728
MeFOSA	μg/L	ND	0.80	6282486	NR	10	6309573	NR	6274728
EtFOSE	μg/L	ND	0.80	6282486	NR	10	6309573	NR	6274728
MeFOSE	μg/L	ND	0.80	6282486	NR	10	6309573	NR	6274728
EtFOSAA	μg/L	ND	0.80	6282486	ND	10	6309573	<rdl (post-oxidation)<="" td=""><td>6274728</td></rdl>	6274728
MeFOSAA	μg/L	ND	0.80	6282486	ND	10	6309573	<rdl (post-oxidation)<="" td=""><td>6274728</td></rdl>	6274728
6:2 Fluorotelomer sulfonic Acid	μg/L	210	8.0	6282486	ND	10	6309573	-210	6274728
8:2 Fluorotelomer sulfonic Acid	μg/L	380	8.0	6282486	ND	10	6309573	-380	6274728

PFAS "DARK MATTER"

- Typical PFAS analyses report 20-50 PFAS
- It is well understood that there are thousands of PFAS compounds present in the environment, most are unknown or uncharacterized:

"Dark Matter"

- PFAS Dark Matter can:
 - Break down or transform into PFAS that are measured
 - Contribute toxicity risk beyond that identified by the currently reported PFAS
- How do you accurately assess site risk or required remedial effort with this unknown?
- The Total Oxidizable Precursors (TOPs) assay gave us a glimpse of the Dark Matter but most now agree it is not a full solution.
 - Not fully quantitative
 - High sample variability.
 - Does not necessarily capture all of the Dark Matter

The answer... Total Organic Fluorine (TOF)

COMBUSTION ION CHROMATOGRAPHY (CIC)

- Adsorption
- Combustion
- Absorption
- Ion Chromatography (F⁻)

FIRST COMMERCIALLY VIABLE CIC-TOF METHOD

Science of the Total Environment 673 (2019) 384-391

Determination of adsorbable organically bound fluorine (AOF) and adsorbable organically bound halogens as sum parameters in aqueous environmental samples using combustion ion chromatography (CIC)

Total Organofluorine vs Σ PFAS in Wastewater

- Isolate organofluorine from inorganic fluorine
- Automated combustion
 - Organofluorine converted to HF and trapped in water.
- Automated transfer to ion chromatograph.
- Total organofluorine in wastewater typically 100x higher than sum of PFAS suggests.

Reference: von Abercron et.al.: Sci. Tot. Environ., 2019, 673, 384-391

WHAT DO TOF RESULTS MEAN?

Remember...

TOF by CIC is measuring the <u>fluorine contribution</u> from all of the fluorine-containing organic compounds in the sample

"REAL WORLD" SAMPLES – LC/MS/MS vs. TOF-CIC

Sample #	6:2 FTS (μg/L)	PFOS (μg/L)	PFHxS (µg/L)	Σ PFAS by LC/MS/MS (μg/L)	Calculated Organic Fluorine ¹ (µg/L)	TOF by CIC (μg/L)	Increase
PC-11	13	12	0.7	25.7	15.7	23	1.5 x
MW-12	<0.3	3.5	1.1	4.6	2.9	50	17 x
Petroseal 3% ²	53,000	<rdl< td=""><td><rdl< td=""><td>53,000</td><td>30,500</td><td>>>2,400,000</td><td>> 80 x</td></rdl<></td></rdl<>	<rdl< td=""><td>53,000</td><td>30,500</td><td>>>2,400,000</td><td>> 80 x</td></rdl<>	53,000	30,500	>>2,400,000	> 80 x

¹ Calculated based on LC/MS/MS results

GROUNDWATER TOPs ASSAY (ΣPFAS) vs. TOF (CIC)

BUREAU VERITAS

WASTE ACTIVATED CARBON TOF (ΣPFAS) vs. TOF (CIC)

SURFACE WATER: TOF (ΣPFAS) vs. TOF (CIC)

PFAS – ANALYTICAL OPTIONS

ADVANTAGES AND LIMITATIONS

Test Name	Problem Statement	Advantages	Limitations
PFAS by LC/MS/MS	 Characterization and quantitation of individual PFAS at ultra trace levels Regulatory compliance Risk Assessment 	 Provides accurate concentrations for individual PFAS 1-2 ng/L reporting limits meets all current regulatory standards 	 Higher cost test "Targeted" analysis 30-40 individual compoundsout of a potential 5000+ PFAS
Total Oxidizable Precursors (TOPs) Assay	 Characterization and quantitation of individual PFAS at ultra trace levels Regulatory compliance <u>Indication</u> of total PFAS 	 Provides accurate concentrations for individual PFAS Indicates the presence of PFAS not measured by LC/MS/MS ("Dark Matter") 	 High cost Labor intensive assaylonger turnaround times High sample variability Not fully quantitative Does not necessarily provide a "total" PFAS result
Total Organic Fluorine (TOF)	 <u>Measure</u> of total PFAS "Is my sample "PFAS-free?" 	 Provides concentration of organic fluorine, which is <u>representative</u> of the presence or absence of PFAS Less labour intensive Lower priced analysis 	 Reporting limits: 600 ng/L (total F) in water 200-700 ng/g (total F) in soil Non-selective analysis

WHEN TO USE WHICH TOOLS?

Analytical Need	PFAS by LC/MS/MS	TOPs Assay	TOF by CIC
Regulatory Compliance			
Site Characterization			
Contaminant Delineation	\checkmark		
Completeness of Remedial Action			
Site Risk (Future Liability)			
PFAS-Free AFFF			

ACKNOWLEDGEMENTS

Analytical Methods and Operations Adam Robinson Sin Chii Chia, MSc Colm McNamara Alicia Wilson, BSc

Project Management Lori Dufour, BSc Stephanie Pollen, BSc

Research & Development Heather Lord, PhD Lusine Khachatryan, MSc

Contact Points

Stephanie Pollen, BSc

Account Manager, Ultra Trace Analysis <u>stephanie.pollen@bureauveritas.com</u> (905) 817-5830

Terry Obal, PhD, CChem Chief Science Advisor taras.obal@bureauveritas.com (905) 288-2174

PFAS@BVLabs.com

Shaping a World of Trust

www.bureauveritas.com

