

In Situ Salt Remediation - Carbon and Cost Benefits of Treating Soil in Place

Elizabeth Murray, Kent Cryer, Michael Quesnel, Leo Rogochevski, Adam Dunn, Bruce Greenberg, Benjamin Poltorak, and Perry D. Gerwing

Elizabeth.Murray@Earthmaster.ab.ca

www.Earthmaster.ca

Earthmaster Environmental Strategies Inc.

A Canadian environmental technologies company:

- Founded in 1998 and based in Calgary, Alberta, Canada.
- Specializes in providing environmental services to the commercial/industrial and upstream oil and gas industry in Western Canada.
- In-house lab facilities for microbiological research and a growth facility for plant testing.
- Co-developed commercial phytoremediation systems (PEPSystems[®]) to treat contaminated soil in an eco-friendly and responsible manner.

Earthmaster uses a combination of plants and bacteria to remediate contaminants from soil in an eco-friendly way.

IEPS/sten

In Situ Remediation

Manage contaminants in place:

- Conserve the soil.
- No transfer of liability.
- Often involves adding things to the soil to break contaminants down.
- Can be more cost effective.

The problem with high salinity:

- Plants have difficulty in drawing water from the soil.
- Plants will struggle to grow.
- Can't break salts down to non-toxic components.
- If the salt isn't removed it may come back to create additional problems.

EPS/ste

Salt Remediation in Soil

What are the options?

- Remove the soil
 - Landfill
- Leave it in place and bind it
 - Commercial soil binders
- Wash it out

- +/- surfactants
- Remove the salt
 - Electrokinetics
 - Phytoremediation

Former Battery Site - Southern Saskatchewan

48,000 m² (12 acres) of salt impacted surface soil with very poor growth.

- Salt impacts went to 6.00 m bgl.
- Since early 1990's numerous unsuccessful attempts had been made to re-vegetate the area.
- Groundwater recovery system was installed in 1997 (weeping tile and collection culverts).
- Many large bare areas. Any growth consisted of kochia, foxtail barley, etc.
- Laboratory analyses showed elevated:
 - ECe's up to 45.3 dS/m
 - chloride up to 12,000 mg/kg

EPS/stems

- SAR's up to 34.7
- boron up to 23 mg/kg

Landfilling - the quick and easy solution.

Distance to nearest landfill is 100 km.

48,000 m² x 6.0 m = 288,000 m³ \rightarrow over 500,000 tonnes

Trucking costs \$15/tonne x tipping costs \$20/tonne = \$35/tonne

Landfilling costs: = \$17,500,000 (not including excavation or backfilling)

Landfilling costs = \$3,000,000 for upper 1 m of soil

Landfilling is not feasible or practical, transfers liability.

Soil Salt Binders

Permanently binds salt (chlorides) so they can no longer interact.

- Does <u>not</u> remove the chloride from the soil.
- Byo-Gon's ByoSoil ByoDetox / Delta's BioLogix Salt Binder
 - Designed for low levels of salt (sodium chloride) contamination on agriculture land
 - Treats chloride levels up to ~3000 ppm
 - Humic acid based provides organics with extremely high ion exchange capacity to bind the ions
 - Cost:

EARTHMASTER

- 1 gallon pail is \$50 USD
- 2 gallons per acre (12 acres) twice per year = \$1,200 USD plus application
- Depth of penetration?
- Migration?
- Regulatory closure?

EPS/ste

Leaching/Flushing

Adding large volumes of low-salt water to the soil surface

- Dissolve the salts and move them below the rooting zone
- Requires good soil structure and good drainage
- Requires a lot of water over multiple applications
- May need to add additional chemicals to the soil
 - Gypsum
 - Bioxy (organic polymer to bind ions and increase mobility)
 - Surfactants (Ivey International)
- Need to reduce soil evaporation to prevent the salts from being drawn up to the surface again
- Moves the salt does not remove it unless the soil is flushed and the water collected

EARTHMASTER

EPS/ste

Electrokinetic Remediation

- Requires electrodes and low voltage DC power in the ground to create a uniform electric field.
- Destabilizes bonds and moves ions to corresponding electrodes.
- Requires flushing the anodes and cathodes with water to recover salts.

GroundEffects.org (Regina)

Proprietary technology

Cost: \$20-80/m³ for EK3

Based on 288,000 m³, cost would range from \$5.7 MM to \$23 MM.

Remediation of top meter of 48,000 m²: cost would be \$960,000 to \$3.8 MM.

Subsurface metal structures may cause problems.

PEPS/stems[®] Plant Growth Promoting Rhizobacteria (PGPR) -Enhanced Phytoremediation Systems

PEPSystems

Use bacteria to help the plants grow in stressful conditions.

Plant seeds: Coated with natural soil bacteria

Active rhizosphere: bacteria colocalize with developing roots

Plant cell:

bacteria interact with root cells – ↑ hormones ↓ stress response

EPS/stems

Seed Germination Studies – Produced Water

Seeds

- Different species
- +/- PGPR
- +/- other additives

Contaminant

Produced water 0-100%

Growth conditions

• 25°C for 14 days

Sample Description	Routine Chemistry								
Sample Location	(To Chloride	(To Calcium	a) C Potassium	a) A Magnesium	mga Sodium	(T) Sulphate	Hq	C (dS/m)	SAR
Alberta Tier 1 Groundwater Remediation Guidelines Agricultural Land Use: Fine Soil	100	-	-	-	200	429	6.5-8.5	1	5
AEP EQGASW - Protection of Aquatic Life	120	-	-	-	-	429	6.5-9.0	-	-
Water samples									
Produced Water 1	36775	4223	406	498	18430	1372	7.1	73	71
Produced Water 2	78870	9264	4054	1839	32970	997	6.5	125	82

LEGEND

EARTHMASTER

Denotes values that exceed Alberta Tier 1 Soil and Groundwater Remediation Guidelines and/or Surface Water Quality Guidelines for Use in Alberta as described in the text of the letter/report.

Environmental Quality Guidelines for Alberta Surface Waters (EQGASW) - Alberta Environment and Parks (AEP). July 2014.

Phytoremediation

Plants naturally accumulate salts

• Will extract them from the soil (hyper-accumulation vs. excretion)

Problem – how to get the plants to grow in elevated salt conditions?

Lethal Concentration (LC50)

+PGPR

untreated

ARG

untreated

PRG

+PGPR

Toxicity is a problem

Quantifying the Effects of PGPR - LC50 (Tolerance)

seed	UT	СМНЗ	%change
ARG	7760	12651	63
PRG	6649	12614	90
TF	5553	8583	55
TWG	6064	11731	93
Avg.	6506	11395	75

seed	UT	CMH3	%change
ARG	9953	13857	39
PRG	9346	12525	34
TF	6846	11302	65
TWG	8392	8755	4
Avg.	8634	11610	34

Initial Laboratory Experiments – Elevated Salinity

The advantages of PGPR:

- Regardless of soil salt content, plants take up approximately the same amount of Na⁺ and Cl⁻.
- PGPR has no effect on the ability of plants to take up Na⁺ and Cl⁻.
- PGPR significantly increases the biomass of the plants grown in higher salt conditions:
 - 19.5% ↑ in medium salt
 - 27.7% ↑ in high salt
- The increase is species dependent.
- Grasses are able to remove ~65 g NaCl per kg of dry plant material.

PEPS/stems[®]

Southern Saskatchewan Site

Time = 0

Hydrocarbon vs. Salt Phytoremediation

Weyburn Area

Project Goals:

- Re-vegetate the grassland site to at least 70% of background levels.
- Reduce soil salt levels over time to allow for sustainable plant growth.
- PEPSystems was deployed in the summer of 2010
 - Seed ARG, PRG, Oats, TW
 - PGPR Pseudomonas corrugata
- Treatment area soils were managed over three growing seasons to re-vegetate the area.

Seed Bed Preparation

A.Y

A SECONS

Mulch Amendment

1 ANTAL WEATHING

IN

Vegetation/Salt Removal

Year 3

Sustainability - Year 7 (2019)

Costs & Emissions

- Phytoremediation costs were \$195,000 over 3 years.
- Site was re-vegetated at a cost of \$4/m².
- All previous re-vegetation attempts had been unsuccessful.
- Due to the depth of contamination at this site, landfilling/disposal costs would be substantial.

Carbon emissions from equipment were captured completely by the grasses and were reduced by an additional 35%

The Carbon Benefits of PEPSystems

Average carbon sequestration for grasslands:

• 639 kg/ha/year

Compare carbon amounts emitted by:

- equipment in phytoremediation activities (-sequestration)
- trucking to nearest landfill

Source of equipment emissions values:

- Published papers
- Industry information

Source of carbon sequestration values:

- Zirkle, et al. 2011. HortScience 46:808–814.
- Ginkel, et al. 1999. J. Environ. Qual., 28:1580-1584.
- Qian, et al. 2010. Soil Sci. Soc. Am. J. 74:366–371.
- Jones and Donnelly. 2004. New Phytologist 164:423–439.
- Hungate at al. 1997. Nature 388:576-579.
- Integrated Crop Management Volume 11-2010.

EPS/sten

The Economics of PEPSystems

PHC Remediation

Native Species

Can PEPSystems be adapted to native species?

- PGPR offer an advantage when the growing conditions are challenging.
- There will not be an advantage when growing conditions are good.

Challenging soil:

- Poor quality soil lacking topsoil or organics.
- Naturally occurring elevated salinity.

Challenging species:

• Native prairie species are hard to grow and get established.

Field trials:

- Re-vegetation of a very poor quality soil.
- Native grass plugs to re-vegetate.

Grass Plugs – Laboratory Trial in High Salt

- Soil with elevated salinity EC ~17 dS/m.
- PGPR solution injected into plug.
- Grasses show a positive response to PGPR at higher application rates.

Re-vegetation – Commercial Site

Project Goals:

- Revegetate commercial site for use by owner.
 - Highly compacted, poor quality subsoil
 - Difficult to re-vegetate
- Owner has an on-site reverse osmosis system - generates effluent with elevated salinity.
 - Use to irrigate revegetated area
 - Minimize salinity accumulating in the soil or affecting vegetation.

25 weeks post seeding

Salt Removal

Parameter	Value
Annual Decrease in EC _e	1 to 2 dS/m
Na ⁺ and Cl ⁻ Uptake into Foliage	29 g/kg dry mass
Na+: Cl-Ratio in Plant Foliage (mass basis)	25:75
Na ⁺ and Cl ⁻ Removed from Project Sites in Foliage	150 kg/ha
Change in EC _e Accounted for by Foliar Uptake of Salt	Up to 95%

Site salt removal: site is 4.8 ha in size – regular harvesting will remove approximately 700 kg/year.

EPS/sten

Challenges – limited by rooting depth and this takes time.

Phytoremediating Subsoil in Lifts

PEPS/stems

Advantages of PEPSystems

Environmentally Responsible

- Green technology, driven by solar energy.
- Soil is conserved and reused, quality is improved.
- Small carbon footprint (no offsite disposal; minimal heavy equipment usage).

Suitable for remote locations

- Fly in seed and amendments, etc.
- No large scale equipment requirements or hauling requirements reducing truck traffic on roads.

EPS/ste

Effective for challenging contaminants

- PHC fractions F3 and F4.
- Salts and metals.

Economic advantages

- Low cost as compared to other technologies.
- Overall remediation cost spread out over several years.

Next Steps - Isolation of New PGPR

Culture bacteria from contaminated soil: identify using 16s rRNA genomic sequencing

FEFS/stems[®]

Next Steps - Reclamation

16th Ave NE, Calgary, 2021

National Research Council – Industrial Research Assistance Program (IRAP).

Clients who have allowed Earthmaster to conduct field trials to advance the PEPSystems technology.

Thank You Questions?

EPS/sten

PHYTOREMEDIATION

Remediating the past. Reclaiming our future.

earthmaster.ca