Bioremediation of Chlorate and Chromate Contaminated Groundwater in Cold Climate

> Mehdi Motevasselin Dr. Beata Gorczyca Dr. Richard Sparling Dr. Indra Kalinovich

> > Remtech 2021 Oct.13-15



### Chlorate

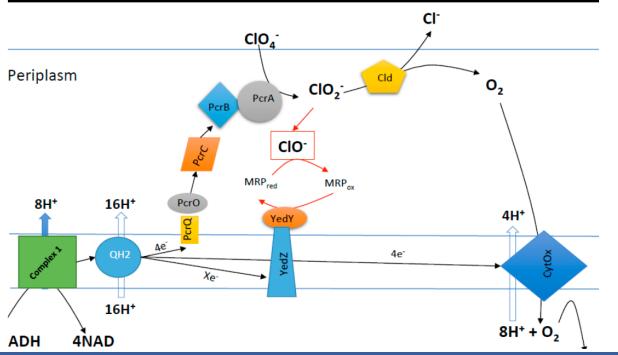
- As sodium chlorate, calcium chlorate, potassium chlorate, and magnesium chlorate
- Uses: Herbicide , Bleaching
- Health concerns: Blood, Thyroid
- Regulations: 1 mg/l in drinking water



### Chromate

- As chromium trioxide or chromic acid, potassium chromate, sodium chromate
- Uses: stainless steel, textile dyes, wood preservation, anti-corrosion, paint pigments
- Health concerns: respiratory tract, kidneys, eyes and skin
- Regulations: EPA: 0.1 mg/l, Canadian guideline 0.05 mg/L (50 µg/L) based on total chromium






### Chlorine Ions Stability

| Formula            | Name         | Oxidation state | Stability<br>(aqueous phase) |
|--------------------|--------------|-----------------|------------------------------|
| Cl-                | chloride     | -1              | stable                       |
| CIO                | hypochlorite | +1              | unstable                     |
| CIO <sub>2</sub> - | chlorite     | +3              | unstable                     |
| CIO <sub>3</sub> - | chlorate     | +5              | stable                       |
| CIO <sub>4</sub> - | perchlorate  | +7              | very stable                  |



### Perchlorate and Chlorate Bioremediation Path \*



\* Wang O., Coates John D., Biotechnological Applications of Microbial (Per)chlorate Reduction, open access article distributed under the terms and conditions of the Creative Commons Attribution



### Chromium Ions Stability

| Formula          | Oxidation state | Stability<br>(aqueous phase) | Reduction<br>(e– donor) |
|------------------|-----------------|------------------------------|-------------------------|
| Cr⁺              | +1              | unstable                     |                         |
| Cr <sup>2+</sup> | +2              | unstable                     | Cr(VI) Cr(III)          |
| Cr <sup>3+</sup> | +3              | very stable                  | Oxidation               |
| Cr <sup>4+</sup> | +4              | unstable                     | (e– acceptor/ Bacteria) |
| Cr <sup>6+</sup> | +6              | stable                       | 、 ·                     |

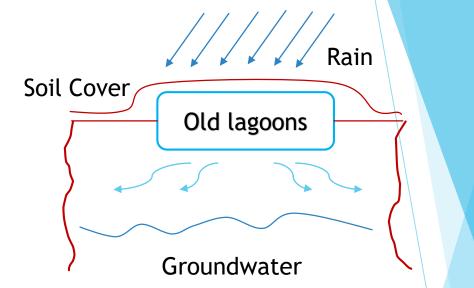


### Bioremediation

- The only method is capable to remove contamination without any need to further processes, and with the minimum side effect on the environment
- In situ:
- o Natural
- Engineered: Bio-stimulation, Bio-augmentation
- Ex situ



### Bioremediation


- Affecting Parameters:
- Microorganisms
- Bioavailability
- Environmental circumstances: Substrate, Osmosis pressure, Contaminants solubility, Soil permeability, Oxygen, Temperature, pH, Moisture

**University** 

**Manitoba** 

# **Problem Statement**

- Old lagoons were used to dump waste
- Chlorate: 3900 mg/l >> 1mg/l
- Chromium(VI): 3 mg/l > 0.05 mg/l



- Lack of proper electron donor prevented microorganisms from reducing chemicals
- Insufficient nutrients
- Absence of reducing bacteria



# **Objectives**

- Determining the ability of microorganisms in the site to reduce chlorate and chromate to less harmful materials
- Specifying necessary nutrients for bioremediation
- Investigating the possibility of bioremediation process in cold conditions



### Synthetic Water

|                                  | Well data, groundwater |                   | Synthetic media |                                      |        |
|----------------------------------|------------------------|-------------------|-----------------|--------------------------------------|--------|
|                                  | (mg/L)                 | (mMol)            |                 |                                      | (mMol) |
| Chlorate                         | 3900                   | 46.71             |                 | Sodium chlorate                      | 11.97  |
|                                  |                        |                   |                 | (1000 mg/L chlorate)                 |        |
| Chromium(VI)                     | 3.03                   | 0.058             |                 | K <sub>2</sub> CrO <sub>4</sub>      | 0.058  |
|                                  |                        |                   |                 | (3 mg/L as Cr(VI))                   |        |
| Nitrogen ( $NO_3^-$ ; $NO_2^-$ ) | 15.9                   | NO <sub>3</sub> - | 0.256           |                                      |        |
|                                  |                        | NO <sub>2</sub> - | 0.346           |                                      |        |
|                                  |                        | Overall around    | 0.3             |                                      |        |
| Sulfate                          | 672                    | 9.73              |                 | 0.1 g of MgSO <sub>4</sub> . $7H_2O$ | 0.405  |
| рН                               | 7.25-8.07              |                   |                 | 7.1-7.2                              |        |



University **≝Manitoba** 

### Nutrients and additives

|                           | Well data, | groundwater | Synthetic media                             |        |
|---------------------------|------------|-------------|---------------------------------------------|--------|
|                           | (mg/L)     | (mMol)      |                                             | (mMol) |
| Sodium acetate            | -          | -           | 2200 mg/l NaAcetate                         | 37.262 |
| Phosphorus an<br>Nitrogen | d 4.16     | 0.134       | 500 mg/l (NH <sub>4</sub> ) <sub>2</sub> HP | 3.786  |
| Minerals                  | -          | -           | ATCC 1191 1:100                             |        |

 $CH_3COO^- + 4/3 CLO_3^- \longrightarrow 2HCO_3^- + H^+ + 4/3 Cl^- *$ 

CNP molar ratio: 100:10:5

\* G. B. Rikken et. AI Transformation of (per)chlorate into chloride by a newly isolated bacterium: reduction and dismutation, Appl Microbiol Biotechnol (1996) 45:420*D*426



### Batch Test Design

| No.               | Sample composition                                                           | Number of bottles |  |
|-------------------|------------------------------------------------------------------------------|-------------------|--|
| 1 (C)             | Synthetic water + Carbon source only (Acetate)                               | 3                 |  |
| 2 (C+M)           | Synthetic water + Carbon source + Minerals (1:100)                           | 3                 |  |
| 3 (CNP)           | Synthetic water + Carbon source + Nitrogen and Phosphorus                    | 3                 |  |
| 4 (CNP+M)<br>Warm | Synthetic water + Carbon source + Nitrogen and Phosphorus + Minerals (1:100) | 3                 |  |
| 5 (CNP+M)<br>Cold | Synthetic water + Carbon source + Nitrogen and Phosphorus + Minerals (1:100) | 3                 |  |



Inoculum

- Wet soil contains 19% moisture
- Measuring enzymatic activity by FDA analysis showed that dry soil, wet soil and groundwater have 0.015, 0.016 and 0 mg/L Fluorescein concentration
- ATP analysis result for groundwater was 222.69 pg/L
- 4 gr of dry soil + 4 gr of wet soil + 2mL of groundwater for 400 mL of media (2.5% wt)



### Anerobic Condition

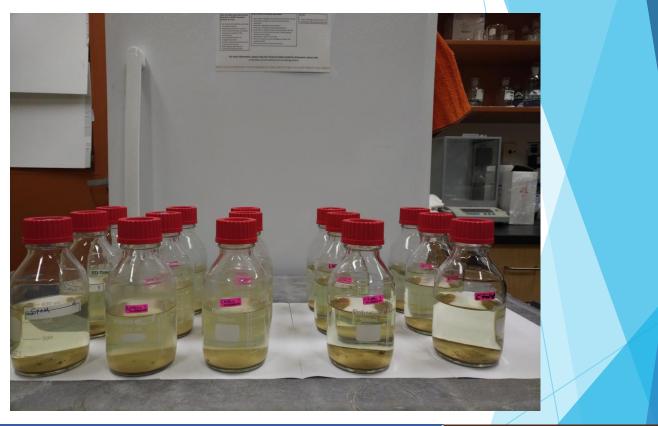
All bottles degassed for 7 minutes and then purged with nitrogen gas for 3 minutes. This process has been done 4 times to make sure that all oxygen content has been removed.



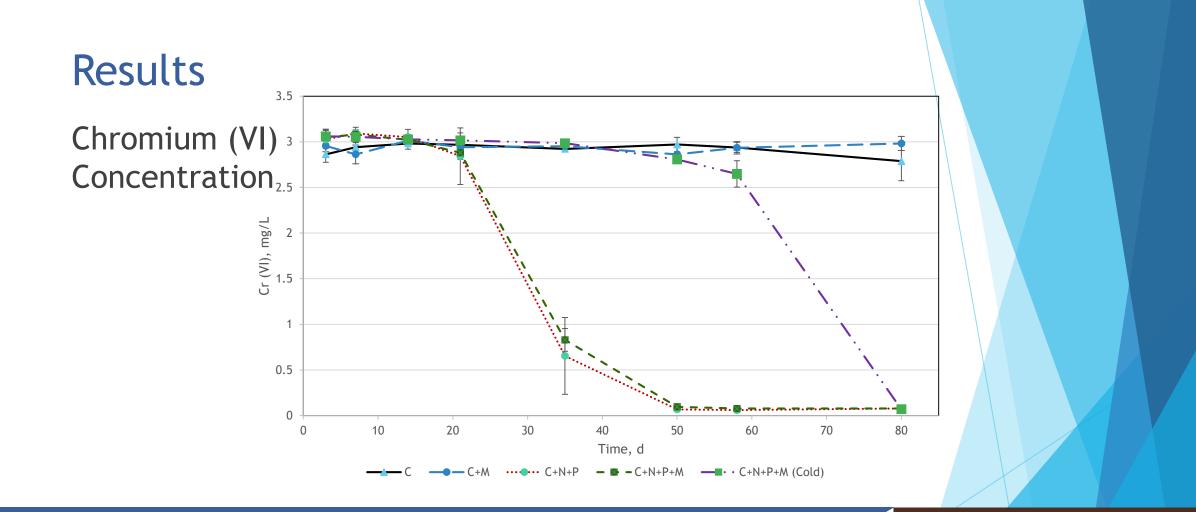


### Sampling

- Sampling were taken 3, 7, 14, 21,28, 35, 50, 58, 80 days after starting the experiment
- HACH DR-3900 spectrophotometer was used for Cr(VI)
- IC machine for chlorate

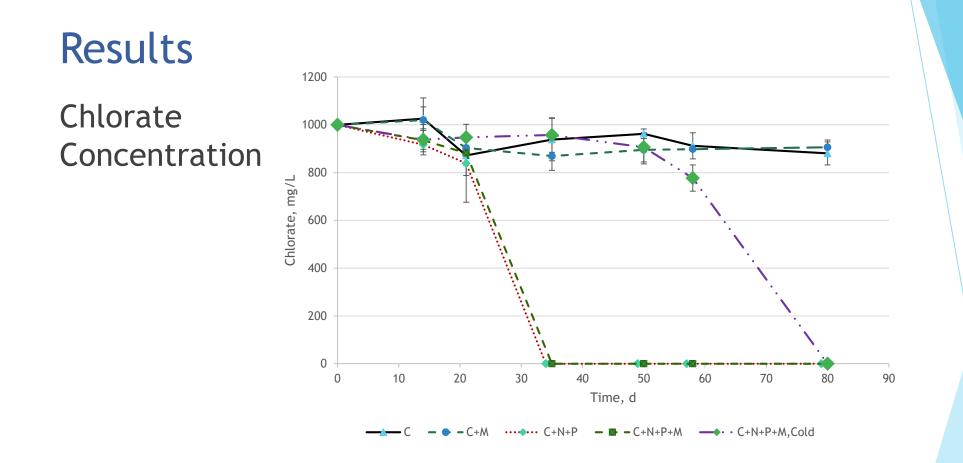






# Results

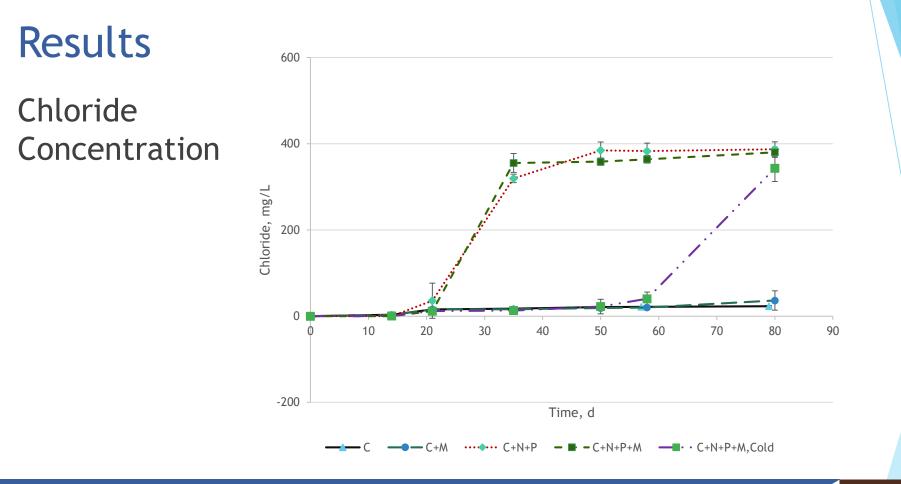
### Appearance after 5 weeks

Samples without Nitrogen and Phosphorus source remained clear and transparent as well as bottles in the cold chamber in 10 °C while microcosms containing N and P became cloudy.





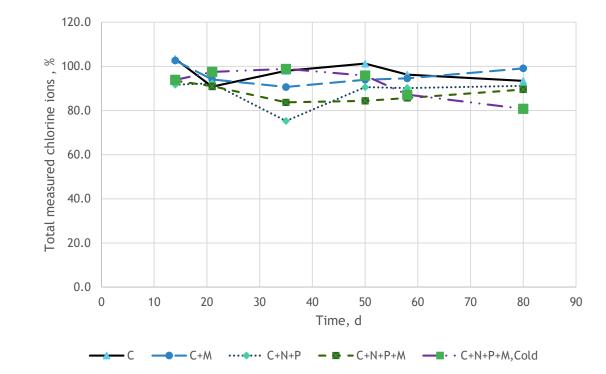













# Results

### Chlorine ions Concentration





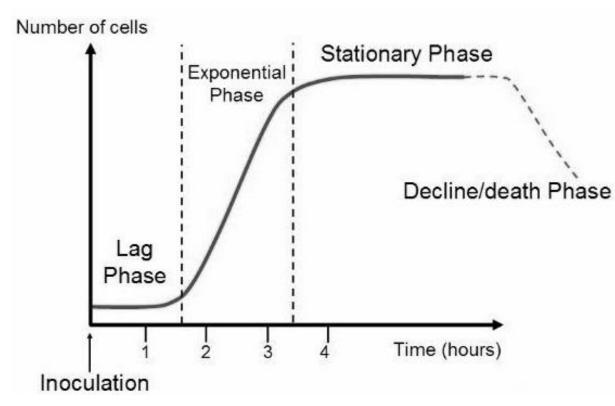
# Results

### Discussion

- the local microorganisms already present at the site could reduce chlorate and chromate below the applicable drinking water criteria
- Acetate is a proper electron donor for reducing reactions
- Nitrogen and phosphorous are necessary elements to complete the process
- Adding micronutrients as ATCC 1191 media is not effective in the bioremediation
- An in-situ remediation approach of enhanced bioremediation is a suitable option to remediate chlorate and chromate impacted groundwater under cold conditions

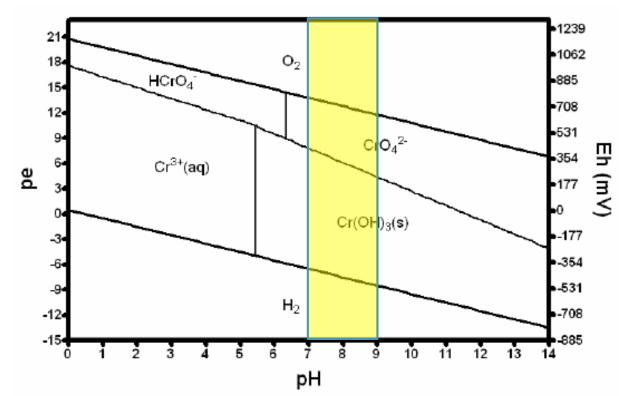


# Thank you






# University of Manitoba


|                         | conc (g/       | l) in "1000x |                |  |
|-------------------------|----------------|--------------|----------------|--|
| Mineral                 | add (mg) sol." | Final conc   | (g/l) in media |  |
| ferric chloride (FeCl3) | ) 1050         | 2.1          | 0.0021         |  |
| cobalt chloride         | 1000           | 2            | 0.002          |  |
| manganese chloride      | 500            | 1            | 0.001          |  |
| zinc chloride           | 500            | 1            | 0.001          |  |
| nickel chloride         | 500            | 1            | 0.001          |  |
| calcium chloride        | 250            | 0.5          | 0.0005         |  |
| cupric chloride         | 250            | 0.5          | 0.0005         |  |
| sodium molybdate        | 250            | 0.5          | 0.0005         |  |
| nitriloacetic acid      | 10100          | 20.2         | 0.0202         |  |





https://orbitbiotech.com/bacterial-growth-curve-generation-time-lag-phase-log-phase-exponential-phase-decline-phase/





Dominic A. Brose, Oxidation-reduction Transformations Of Chromium In Aerobic Soils And The Role Of Electron-shuttling Quinones In Chemical And Microbiological Pathways, 2008, University Of Colorado, Master Thesis

