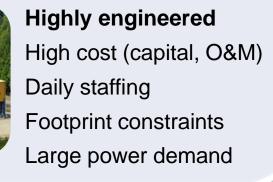

Innovative Strategies for the Management of Metal Impacted Waters

Silvia Mancini, Ph.D., P.Geo. (ON, BC)

Water Treatment Challenges

- Constituents
- Treatment
 - Risks of secondary constituent generations
 - Physicochemical vs.
 biological treatment
 - Regulatory drivers
- Conditions
 - Remote locations
 - Climate conditions
 - Variable flow rates

Constituents	Examples	
Heavy metals	Cd, Pb, Hg, Tl, Ni, Co, AMD	
Metalloids	Se, As, Te	
TDS	SO ₄ , CaCO ₃ , Mg, Zn	
Toxicity concerns	Cyanide, TDS, organo-Se	



The Role of Innovation

Active Water Treatment

- Innovation is the second most important growth strategy
- Cost for compliance
 - Scale is large, \$/Liter is increasing
 - More stringent, complex effluent limits
 - Difficult to treat metals (Se, Ni, Ze)
 - Remote sites, harsh climates
- Environmental, social governance and sustainability
 - Water and energy consumption, waste generation
 - Climate change
 - Community relationships and environmental conservation

Innovative Technologies

Passive Water Treatment

Less engineered Lower cost Footprint constraints Reliability and seasonality Sustainability

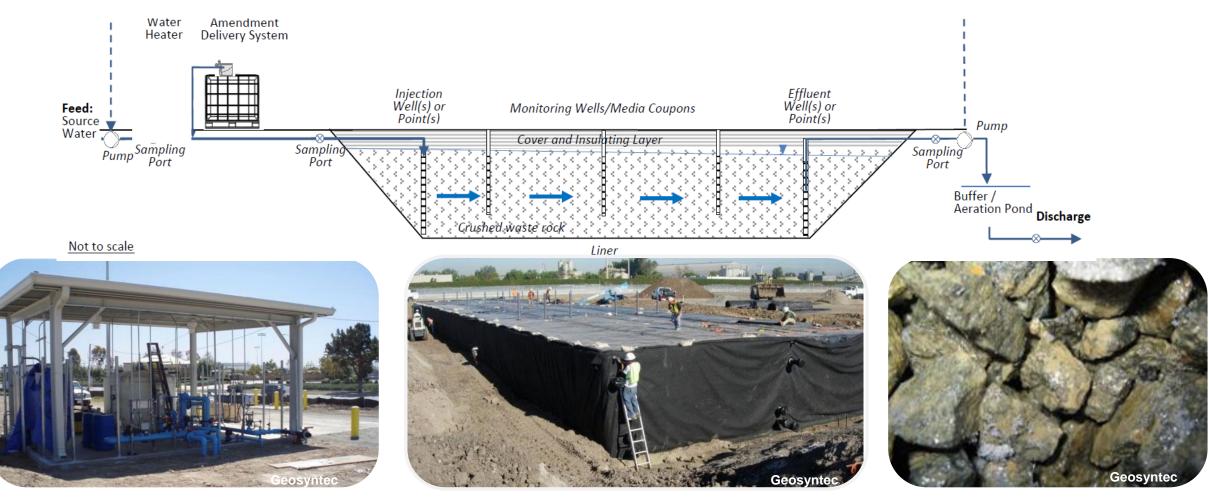
Innovative Treatment Examples

Gravel Bed Reactors (GBR) – Biological Se, NO₃

In-Pit Treatment Ni, Co, Se, NO₃

GBR – Chemical As, pH and other metals

TreeWell[®] Treatment Se, Hg, Mn, Ni, Cd, Co, Zn, SO₄, NO₃


Constructed/Engineered Wetlands Cu, Pb, Zn

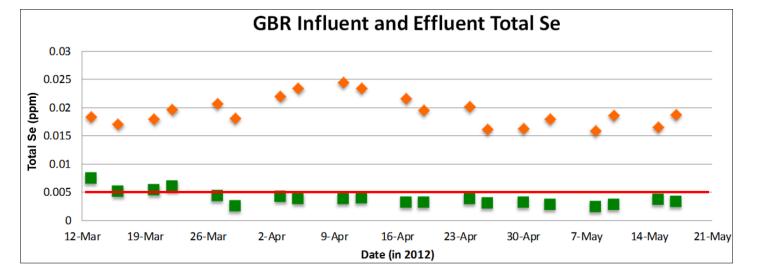
Permeable Reactive Barrier (PRB) – ZVI Cr(VI)

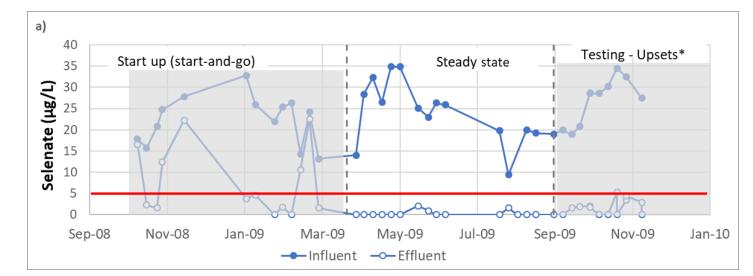
Gravel Bed Reactors (GBR)

GBR as a solution for inorganics, pH adjustment, and metal/metalloid treatment

GBR Advantages

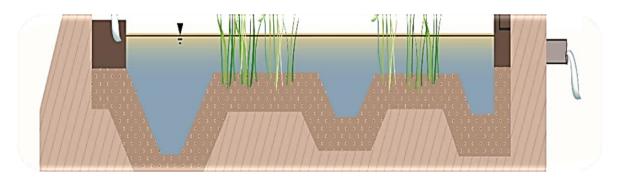
- Can be place proximal to sources
- Predictable control of flow and residence time
- Inexpensive monitoring infrastructure automation possible
- Easy integration of biofouling controls and rehabilitation measures
- Hydraulic isolation from surrounding environment
- Cold climate operation possible

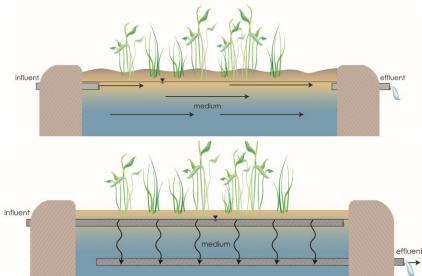

GBR Examples



Coal Mine – Se and NO3⁻

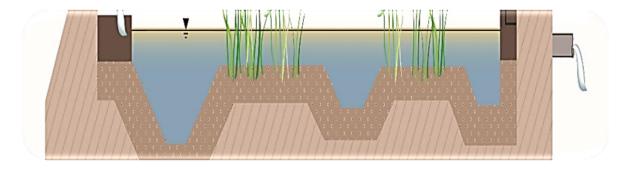
Urban Stream – Se and NO₃⁻




Constructed Wetlands

Solution for treatment of metals and inorganics


- Surface flow wetlands
 - Aerobic processes
 - Nitrification of ammonia
 - Aerobic biodegradation of organics
 - Precipitation of metals as carbonates, oxides and hydroxides



- Subsurface flow wetlands (horizontal and vertical flow)
 - Aerobic and anaerobic processes
 - Denitrification of nitrate to N₂
 - Precipitation of metals as sulfides

Constructed Wetlands Comparison

Efficacy Category	Hybrid Vertical Subsurface Flow Wetland System	Surface Flow Wetland	
Cold Climate / Seasonal Treatment	Yes	Limited	
Long Term Stability	Adaptable design with isolated treatment mechanism		
Operation and Maintenance	Low; passive	Low; passive	
Treatment Flow per Unit of Land Area	High	Low	
Footprint	Mid	Large	
Cost for Implementation	Mid	Low	
Power Demand	Low	Low	
Isolated Treatment Cells	ells Yes Yes		

Constructed Wetland Examples

- Constructed wetland
 - Landfill leachate sites
 - Pilot (Wetland on Wheels) and full scale for high strength leachate
 - Operation in cold winter
- Hybrid passive water treatment system
 - Metals-impacted water; Silver Mine, Western USA
 - Series of passive technologies: sulfatereducing bioreactor followed by constructed wetlands as a polishing system
 - Cd, Cu, Fe, Pb, Mn, Ni, Ag, and Zn
 - Remote, high altitude environment; cold temperatures, high variability in flow and metals concentrations

Parameter	Removal
Alkalinity (mg/L)	69%
TKN (mg/L)	96%
TSS (mg/L)	94%
Cd (mg/L)	72%
Se (µg/L)	52%
Zn (mg/L)	86%

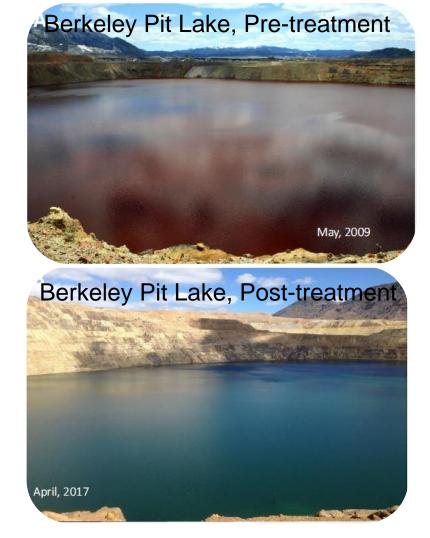
In-Pit Treatment

Solution for treatment of metals and acidic water

- Chemical amendment to pitlake
- Treatment of legacy pit-lakes
- Most common treatment is lime application
- Increase pH causing
 precipitation of metals

In-Pit Treatment Advantages

- High treatment throughput
- Multiple options for amendment application (pipeline, jets, sprays)
- Treatment can be automated
- System can be re-used for subsequent pit-lake treatment
- Pit lake stratification



Scholz, E. et al., In-lake neutralization of post-mining lakes, LMVB, 2017

Full Scale Applications

Lake Name	Distribution Method		
Berkeley Pit-Lake	Shore-based plant, lime applied using pipeline		
Meirama Mine Pit-Lake	Liming of influent stream		
Rävlidmyran Pit-Lake	Lime injected through a pipeline from trucks		
Lake Senftenberg	Lime applied using hopper barges without mixing		
Lake Geierswalde	Resuspension of lime from bottom of pit-lake and applied using sprinklers		
Lake Bockwitz	Soda applied into the lake using air/solid mixture injection		
Lake Hain	Shore-based plant, slurry applied using sprinklers and distributed via lake convective currents		
Lake Bernstein	Limed using a commercial barge and underwater pipeline		
Lake Scheibe	Shore-based plant for application of lime slurry and CO_2 for buffering		
Lake Nero	Shore-based plant used to create slurry and applied via pipeline		

Gammons, C. H., & Icopini, G. A. (2020). Mine Water and the Environment, 39(3), 427–439

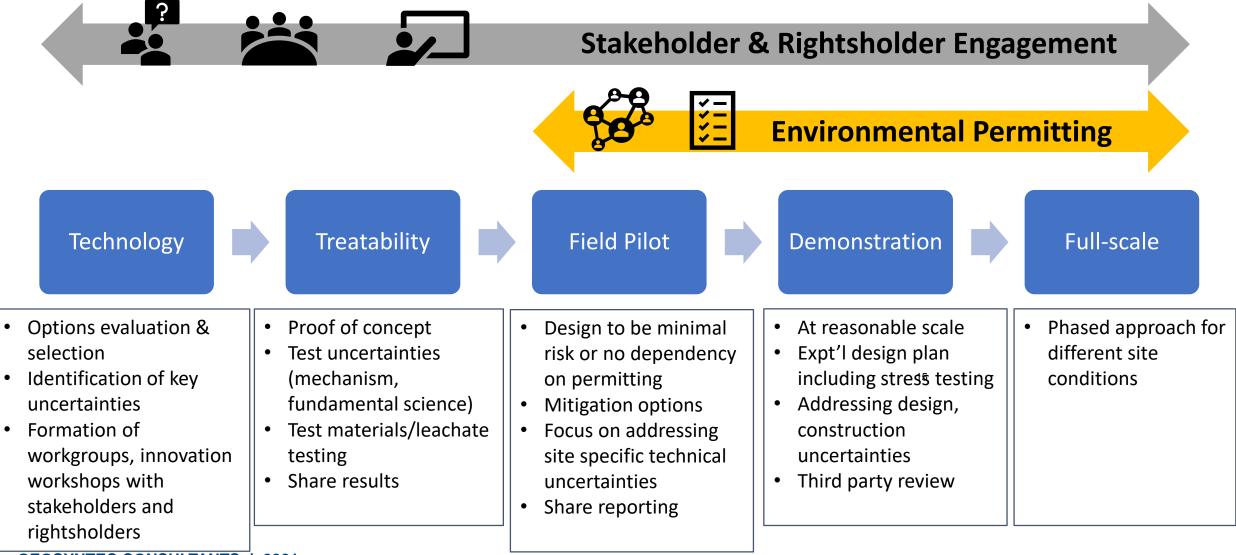
From Innovation to Implementation

Stakeholder and Rightsholder Engagement

Leading Science - Lasting Solutions

Field Pilot

Environmental Permitting


Demonstration

Full Scale

Permitting Innovation

Water Treatment – Closing Thoughts

- Innovative, passive treatment provides potential solutions for a variety of impacts
- Innovative, passive treatment is estimated to cost ~50-70% of CAPEX and ~25-40% of OPEX costs compared to active treatment systems, depending on site conditions
- Supports ESG and integrated management and closure approaches
- Key to success...collaboration and early engagement

Chemicals of Concern	Gravel Bed Reactor	Wetland	TreeWell®	Permeable Reactive Barrier	In-Pit Treatment
pH (acidity)	\checkmark	\checkmark		\checkmark	\checkmark
Alkalinity	\checkmark	\checkmark		\checkmark	\checkmark
Suspended Solids		\checkmark			
Nitrate, Phosphate	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Metals	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Metalloids (Se, As)	\checkmark	\checkmark	\checkmark	\checkmark	
Cr(VI)	\checkmark	\checkmark	\checkmark	\checkmark	

ADDITIONAL RESOURCES

For more information, please visit

www.geosyntec.com

www.geosyntec.com/webinars

Silvia Mancini, Ph.D., P.Geo. (ON, BC) Principal 416-637-8745 smancini@geosyntec.com

QUESTIONS?