Non-Biological Removal of Selenate and Other Metalloid Oxyanions

MARTEREARANANANANANANAN PROPERTIES A PROPERTIES.

October 2021

BQE Water

David Kratochvil PhD, PEng Brent Baker Peng Maryam Mohammadi, PhD

Concept of Non-biological Treatment

1

Why Non-Biological Treatment for Selenium?

Reach end-of-pipe target		
of < 2 μg/L		

Avoid organo-selenium issues & chronic effects

Stable refractory residue with off-take potential

Avoid bio treatment issues: nutrient add, COD/BOD, TSS

Handle large fluctuations in flow and mass loading

Provide seasonal or intermittent treatment

Selen-IX[™] = IX + ERC for Se Removal

Selectively removes Se to < 1 ppb while fixing Se into small quantity of stable inorganic solid residue

- Selective sequestration of Se from impacted mine water
- Produce treated water with Se < 1 ppb
- Pre-concentrate Se by factor of 20 to 2000x

- Remove Se from pre-concentrated solution to eliminate brine from IX
- Stabilize Se into non-toxic inorganic residue suitable for re-use

NF/RO + ERC for Simultaneous Se & SO₄ Removal

- Produce treated water with Se & SO₄ complying with discharge limits
- Pre-concentrate Se & create CaSO₄ supersaturation
- Remove SO₄ by relieving CaSO₄ supersaturation
- Produce clean gypsum

- Remove Se from pre-concentrated solution to eliminate brine from membranes
- Stabilize Se into non-toxic inorganic residue suitable for re-use

Full-Scale Selen-IX[™] Plant at Kemess Mine

2

Kemess Project Objective

Treat 65 L/s and remove selenate to < 2 ppb and fix it into stable residue for disposal in TSF

Selen-IX[™] at Kemess Pilot

Final De-watered Residue

Se Removal from Plant Feed

ERC Performance – Se Removal into Solid Residue

Plant Selenium Balance from 24-hour Composites

Date	Water Treated by IX (m³/d)	Se in Feed (ppb)	Se in Discharge (ppb)	Se Removed by IX (g/d)
Sept 2	5,609	17.6	1.1	92.5
Sept 6	5,605	17.2	1.0	90.8
Sept 9	5,617	17.2	0.8	92.1
Sept 13	5,616	16.3	0.7	87.8

Date	Regenerant Treated by ERC (m ³ /d)	Se in ERC Feed (ppb)	Se in ERC Discharge (ppb)	Se Fixed into Residue Solids (g/d)
Sept 4	74	1,270	29	91.3
Sept 8	74	1,350	34	96.9
Sept 10	74	1,240	18	90.1
Sept 13	74	1,240	14	90.4

Compact Stable Residue – Iron Oxide Matrix

3

New Non-Biological Selenate Projects and Applications

New Non-biological Selenate Removal Projects

Project	Se Target (µg/L)	WTP Capacity (m³/day)	Treatment	Regulatory Status	Project Status
US Ash Pond #1	< 7.5	5,540	Selen-IX™	Approved & Permit Issued	In construction
US Mine #1	< 1.6	660	NF + ERC	Approved & Permit Issued	In construction
US Mine #2	< 3	24,550	Selen-IX™	Approved & Permit Issued	In procurement
GW Remediation	<1	1,090	Selen-IX™	Unknown	FS

Ash Pond Clean-up Remediation

Project Schedule

2019Bench Scale TestingQ1/2 2020Engineering DesignQ3/4 2020Fabrication & ConstructionQ1/2 2021Plant CommissioningQ3 2021Plant Operations

Project Overview

- Up to 1,000 USGPM
- Intermittent operation with fast ramp up/down if needed to respond to rain events
- Comply with Se discharge target of < 7 μg/L
- Plant to operate 9 to 5 Mon to Fri only

US Mine – NF + ERC under Construction

Project Overview

- Intermittent operation with fast ramp up/down if needed
- Comply with discharge limits of < 1.6 μg/L for Se & 720 to 900 mg/L for SO₄ driven by WET chronic toxicity testing using *Ceriodaphnia dubia*

Project Schedule

Q1 2020	Treatability Assessment
Q2/3 2020	Plant Process Design & Automatior
Q3/4 2020	Procurement
Q1-Q3 2021	Construction
Q4 2021	Plant Operations

Office Building Parkade IX-ERC for Se Removal in USA

Project Overview

- Groundwater seepage (200 GPM) into commercial building requires Se removal prior to discharge to city's sewer
- Discharge limits of < 1.0 µg/L for Se
- Total footprint of treatment less than 4 standard parking stalls in underground parkade

Broader Applicability

- Important in situation when groundwater Se levels are naturally elevated
- Potable water treatment by RO produces a reject that cannot be directed to sewer

Removal of Metalloid Oxyanions Other than Selenate

Co-removal of Hexavalent Chromium by Selen-IX

Co-removal of Hexavalent Chromium by Selen-IX

Co-removal of Hexavalent Chromium by Selen-IX

Metalloid Oxyanion Removal by ERC

Iron Consumed, Kg/m³ IX Regenerant Treated

IX-ERC and NF-ERC provide step change in selenium control

Modular system suitable for mobile deployment for remediation

 Broadly applicable to removing metalloid oxyanions to ultralow levels without waste brine generation