INDUSTRY SOLUTIONS

Bugs and Veggies -Optimization of plant based dewatering and deployment technology for fluid tailings

Victoria Collins October 14, 2021

ccollins@nait.ca

Oil Sands Tailings – The Volume Problem

Composition:

• Water, sand, silt, clay, residual bitumen, unrecovered solvents

Problem:

• High affinity for water

Solids:

- Untreated tailings 10% 30% solids
- Treated tailings 40% 60% solids
 Volume:
- 1.24 Bm³ of fluid fine tailings in 2017*

Plant Mediated Tailings Dewatering

Several studies have suggested that certain plant species may be able to grow in tailings

- Tailings pond bank stabilization
- Tailings dewatering

Factors that limit growth

- Saline conditions
- Limited nutrients
- Hydrocarbons or organic acids

Silva, 1998

Plants Growing on Tailings

Bioaugmentation In Plants

- Plant growth promoting microorganisms can:
 - Provide nutrients for plant growth
 - Degrade plant stress hormones associated with drought and salinity
 - Produce growth hormones
 - Assist in the biodegradation of organic contaminants

Previous studies have found improved:

- Seed germination
- Plant growth
- Yield
- Nutrient content: nitrogen, phosphorous and potassium
- Overall phytoremediation

Bioaugmentation In Plants

Previous Work

Bugs and Veggies

- Evaluated sandbar willow and slender wheatgrass on thickened tailings and centrifuge cake
- Amended with peat and hydrochar
- Inoculated with enriched tailings microorganisms
- Grown in columns outdoors for 3.5 months

Key Findings

Plants

• Sandbar willows improved consolidation, removed water, and increased shear strength in tailings materials.

Amendments

- Hydrochar increased willow leaf biomass, which correlates to increased shear strength
- Bacteria significantly improved root biomass
- Bacteria with hydrochar, produced higher mean average shear strengths than hydrochar alone

Ongoing Work – Deployment Optimization

Objective

To optimize and utilize cost effective, low-maintenance augmented plant technology to progressively dewater tailings with low solids content

Phase 1

- **Trial 1:** Determine the effects of growing selected plant species in close proximity
- **Trial 2:** Determine if floating mats can support wetland species and willows on untreated tailings for dewatering purposes
- **Trial 3:** Determine if the addition of amendments such as hydrochar and bacteria improve plant growth for application on floating mats

Phase 2

Scale-up successful treatments

Trial 1 – Plant Species Evaluation

Rumex occidentalis (Western Dock)

Salix interior (Sand-Bar Willow)

Trial 1 – Results

Trial 2 – Floating Mats

Solids content at start of study: 32%

Trial 2 – Harvest After 15 Weeks

Barrel 1 – Thin Mat

Barrel 2 – Biodegradable Mat

Barrel 3 – Thick Mat

Solids content at end of trial: 56 - 60%

Trial 3 – Amendments

Treatments

- Fully factorial
- 4 microbial amendments, one control, one notreatment
- Fertilizer
- Hydrochar

Conditions

- 10 L pails, 6 replicates
- Carex and Salix only
- Grown for ~6 weeks

Analyses

- Above ground biomass
- Ions, TN in tailings, TN in plants
- Microbial characterization of roots and tailings

Trial 3 – Amendments

B1 – Endo/ecto mycorhizeal fungi (Premier Tech)

B2 – Baccilus pumilus (Premier Tech)

B3 – Custom Biologicals (5 strains Bacillus + N2-fixing Paenibacillus + 4 strains Trichoderma)

B4 – Microbes enriched from Tailings

B5 – Control

Trial 3 – Amendments

Phase 2 – Scale-up

Treatments

- Plants on mats with fertilizer
- Plants on mats + microbe
- Plants on mat + microbe 2 or hydrochar
- 1 barrel tailings only (evaporation control)

Conditions

- 55 gallon/208 L
- 4 replicates (1 rep evaporation control)
- 6 months growth

Analyses

- Shear strength
- Solids content
- Microbial function
- Biomass

Acknowledgements

- Team: Chibuike Chigbo, Amanda Schoonmaker, Kaela Walton-Sather, Christine Martineau, Abdul Samad, Sarah Wegner, Paolo Mussone
- Industry Steward: Gavin Freeman CNRL
- Many technical staff and students with special thanks to Taimur Qureshi, Scott Laberge, and Carl Zhang
- Contact: ccollins@nait.ca

