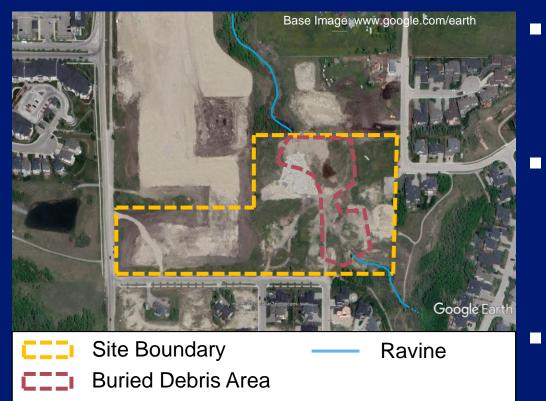
TRACE

Risk-based Approach Supporting the Redevelopment of an Urban Lead-impacted Site

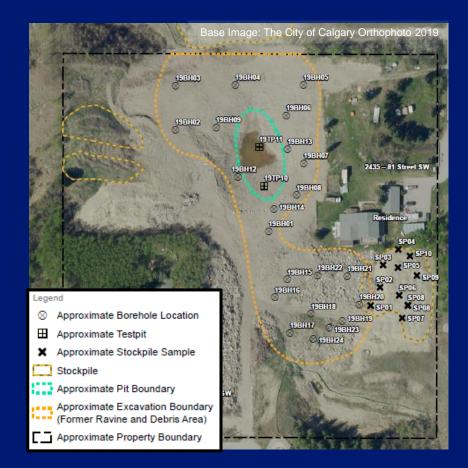
Sylvain Bordenave, Ph.D., P.Biol., QP_{Sask} (He/Him) – Trace Associates Inc. Karl Bresee, B.Sc., PDB, P.Biol., QP_{Sask} – Intrinsik Corp.


Date: October 15, 2021 File: 100-769_2021_RemTech

Outline

- 1. Site Background and History
- 2. Management Goal
- 3. Partial Remediation
- 4. Risk Assessment Metal Exceedances
 - a) Lead Human Soil Direct Contact
 - b) Metal Ecological Soil Direct Contact
- 5. Conclusion
- 6. Project Sustainability Summary

Site Background



- Vacant land subject to residential development with proposed storm water retention pond
- Suspected historical dumping of debris from flour mill demolition in a north-south ravine crossing the Site
- Inert debris (bricks, metal, cloth, concrete, glass, dry lumber, etc.)

Site Management Activities

- 2015 2019: Soil and debris characterization; larger debris excavated
- 2019: Soil characterization (maximum depth of 9 mbgs)
- Exceedances of Tier 1 guidelines for PHC F3-F4, metals, and PAHs
- Estimated 23,000 m³ of soil with exceedances

Preliminary Risk Assessment

Table A: Chemical and Pathways of Concern Summary								
сос	Human Exposure Pathways			Ecological E				
	Soil Indoor Direct Vapour Contact Inhalation		Domestic Use Aquifer	SoilNutrient/EnergyDirectCycling CheckContactContact		Freshwater Aquatic Life	Management Limit	
Metals	Х	N/A	NA	Х	Х	N/A	N/A	
PAHs	-	-	Х	-	N/A	Х	N/A	
PHC Fractions F3 and F4	х	-	-	х	N/A	-	Х	

Risk driver = Human soil direct contact for lead

Site Management Goal

- Remediation to Tier 1 guidelines considered an overly conservative approach
- Preference to avoid Risk Management Plan and associated future liability
- Develop soil Site-specific remediation objectives (SSROs) based on Site-specific risk assessment (Tier 2 SSRA)
- Remediate soil to SSROs and leave in place and/or re-use soil containing inert debris as reclamation material

PAHs and PHCs Exceedances in Soil

Table A: Chemical and Pathways of Concern Summary								
COC	Human Exposure Pathways			Ecological E				
	Soil Direct Contact	Indoor Vapour Inhalation	Domestic Use Aquifer	Soil Ecological Direct Contact	Nutrient/Energy Cycling Check	Freshwater Aquatic Life	Management Limit	
Metals	х	N/A	NA	Х	Х	N/A	N/A	
PAHs	-	-	Х	-	N/A	Х	N/A	
PHC Fractions F3 and F4	х	-	-	х	N/A	-	Х	

PHCs and PAHs Exceedances in Soil - Remediation

- Excavation of PHC exceedances

 Two testpits for a total of approximately 50 m³ (completed in spring 2021)
- Localized PAHs exceedances are associated with asphalt debris and are considered immobile – To be excavated

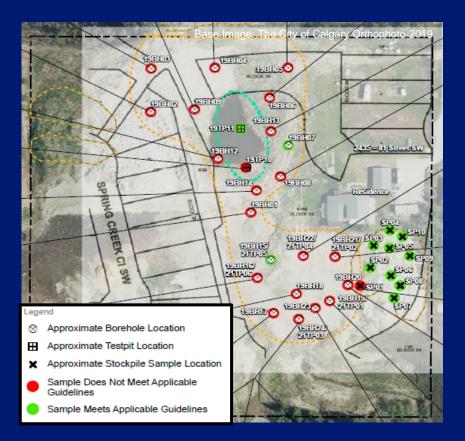
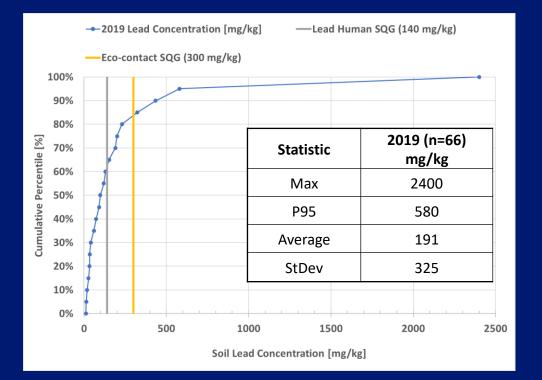

Metal Exceedances in Soil

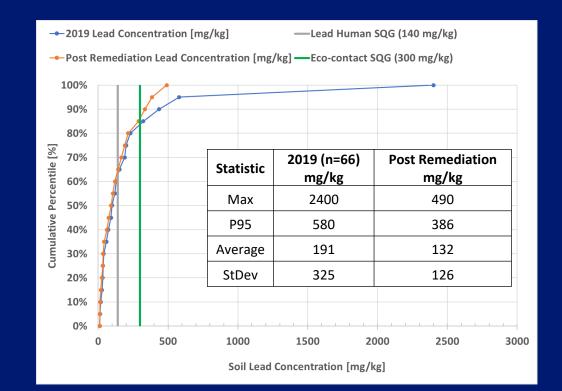
Table A: Chemical and Pathways of Concern Summary								
COC	Human Exposure Pathways			Ecological E				
	Soil Direct Contact	Indoor Vapour Inhalation	Domestic Use Aquifer	Soil Ecological Direct Contact	Nutrient/Energy Cycling Check	Freshwater Aquatic Life	Management Limit	
Metals	х	N/A	NA	х	х	N/A	N/A	
PAHs	-	-	Х	-	N/A	Х	N/A	
PHC Fractions F3 and F4	х	-	-	x	N/A	-	Х	

Metal Exceedances in Soil – Spatial Distribution

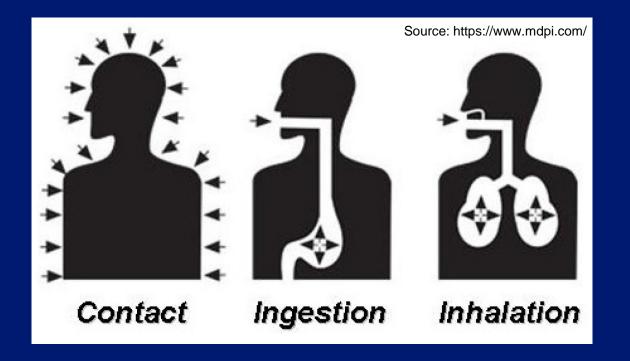

- Exceedances spread across the Site
- Exceedances of the Tier 1 human direct contact guidelines (140 mg/kg) for lead (risk driver)
- Exceedances of the ecological direct contact guidelines for arsenic, chromium, copper, lead, nickel, tin, and zinc

Metal Exceedances in Soil – Data Distribution

- 38% of samples (25/66) with exceedance of human direct contact for lead
- Low frequency of ecological direct contact exceedances (<5% of 66 samples) except for lead (17%) and zinc (30%)



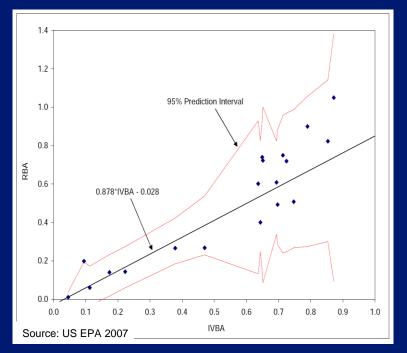
Metal Exceedances in Soil – Post Remediation


- "Hot spots" remediation of lead exceedances
- 35% of samples remain above the human direct contact guideline
- 14% of samples remain above the ecological direct contact guideline

Site-specific risk assessment

Human Soil Direct Contact

Environmental Science and Engineering Advisory


Lead Human Soil Direct Contact – Toxicity Assessment

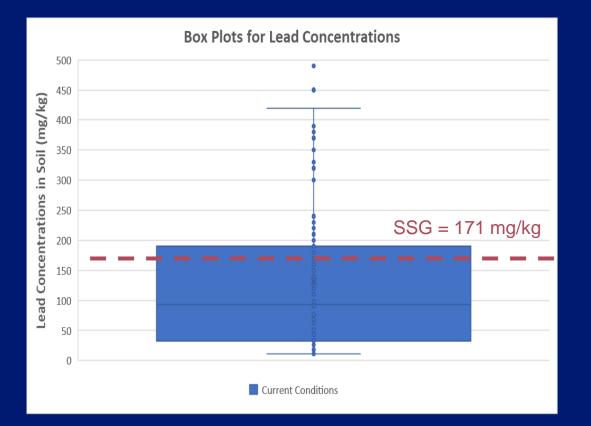
- Toxicity profile
 - Reduced cognitive development and intellectual performance
 - Infants and children are most susceptible subpopulation
- AEP human soil direct contact guideline from CCME (1999) based on tolerable daily intake of 0.00357 mg/kg-day (threshold effect)
- Guideline based on lead bio accessibility of 100% (highly variable in soil)

In Vitro Bio Accessibility Test

- Approved testing protocol (Health Canada 2017 and US EPA 2017)
- Considers only dissolution in stomach (acid extraction) but excludes adsorption rate in small intestine
- Established empirically relationship between the in vivo and in vitro results

Mean site-specific lead bio-accessibility (n=11) of 77%

Lead Human Soil Direct Contact – Site-specific Guideline


- AEP (2019) equation for threshold substances using default parameters with the following exceptions:
 - Site-specific lead bio accessibility (100% > 77%)
 - Dermal absorption (3% > 0.6% based on Wilson and Richardson 2013)

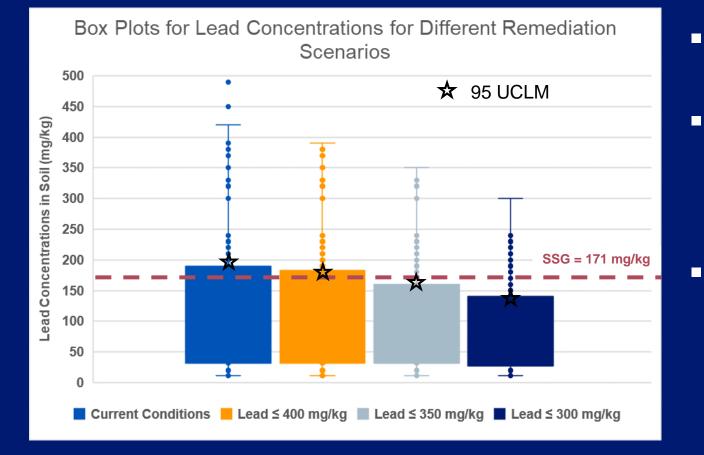
 $SSG_{Pb,HDC} = \frac{(TDI - EDI) \times SAF \times BW}{[(AF_G \times SIR) + (AF_L \times IR_S \times ET_2) + (AF_D \times (SA_H \times DL_H + SA_0 \times DL_0) \times EF)] \times ET_1} + BSC$

Site-specific guideline SSG_{Pb,HDC} = 171 mg/kg

Lead Distribution vs Site-Specific Guideline

 29% of samples remaining above the human direct contact SSG

Statistic	Lead Concentrations mg/kg
Max	490
P95	386
Average	132
StDev	126


Lead Human Soil Direct Contact – Exposure Assessment

- Four remediation scenarios considered
- 95UCLM as exposure point concentration (EPC) (Health Canada 2021)
- EPC range from 130 to 198 mg/kg (n>59)

Lead Exposure Concentrations Statistics Summary								
Lead Remediation Objective	No Further Remediation	400 mg/kg	350 mg/kg	300 mg/kg				
Number of Data Points	69	66	63	59				
Maximum Concentration (mg/kg)	490	390	350	300				
95% Upper Confidence Limit of the Mean (mg/kg)	198	174	154	130				
Geometric Mean (mg/kg)	77	71	66	59				
Standard Deviation (mg/kg)	126	108	93	73				

Lead Distribution vs Site-Specific Remediation Objective

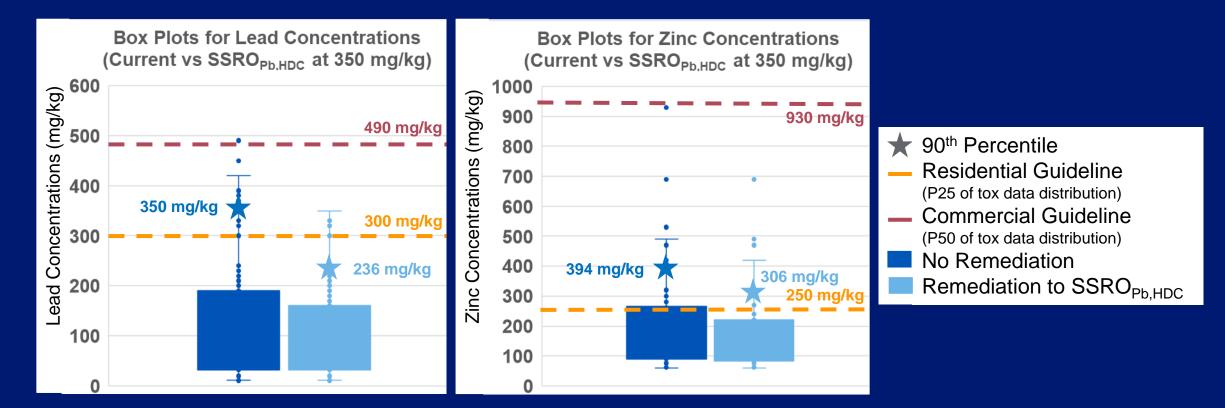
- 95UCLM < SSG for SSRO between 350 and 400 mg/kg
- SSRO of 350 mg/kg
 considered acceptable level of
 lead that does not present risk
 of adverse effect to humans
- Future exposure barrier not accounted for in assessment

Ecological Soil Direct Contact

TRACE

Metal Ecological Direct Contact – Risk Assessment

Exposure assessment using 90th percentile


Metals Ecological Direct Contact Exposure Assessment - Statistics Summary									
Metals of Potential Concern		Chromium	Copper	Lead	Nickel	Tin	Zinc		
Ecological Direct Contact Guideline for Residential Land Use (mg/kg)	17	64	63	300	45	5	250		
Frequency of Exceedances (n=69)	1%	4%	4%	15%	1%	9%	26%		
90th Percentile (mg/kg)	7	53	41	350	28	5	394		

Guidelines derived from toxicity data based on:

- Sensitive species (e.g., agricultural plants)
- Sensitive endpoints (e.g., reproduction, growth)
- Conservative benchmarks values (e.g., no adverse effect levels)

Metal Ecological Direct Contact – Risk Characterization

Severe adverse effects on plant and invertebrate populations not expected

Conclusion

- Partial remediation (PHCs and Lead "Hot Spots")
- SSROs for lead based on SSG for human soil direct contact
- No severe adverse effects expected on plant and invertebrate populations after remediation to SSROs
- Importance of open communication with regulator and stakeholders
- Safety, environmental, and financial benefits of the SSRA approach

Project Sustainability Summary

23,000 m³ using Tier 1 vs 8,000 m³ using SSRO_{Pb,HDC}

Acknowledgements

 Iris Koch from the Environmental Sciences Group at Royal Military College for conducting the bioavailability testing

Environmental Science and Engineering Advisory

References

- US EPA. 2007. Estimation Of Relative Bioavailability Of Lead In Soil And Soil-like Materials Using In Vivo And In Vitro Methods. Office of Solid Waste and Emergency Response. May 2007.
- Health Canada. 2021. Federal Contaminated Site Risk Assessment in Canada: Guidance on Human Health Preliminary Quantitative Risk Assessment (PQRA) VERSION 3.0.
- Health Canada. 2017. Supplemental Guidance on Human Health Risk Assessment for Oral Bioavailability of Substances in Soil and Soil-Like Media. August 2017.
- Wilson and Richardson (Wilson, Ross & Richardson, G. Mark). (2013). Lead (Pb) is now a non-threshold substance: how does this affect soil quality guidelines? Human and Ecological Risk Assessment. An International Journal.

Questions? We're here to help

Sylvain Bordenave, Ph.D., P.Biol. Principal Risk Assessor - Trace sbordenave@traceassociates.ca

Karl Bresee, B.Sc., PDB, P.Biol. Senior Scientist - Intrinsik Corp. kbresee@intrinsik.com

